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Abstract

Randomly Perturbed Berezin–Toeplitz Operators

by

Izak Oltman

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Maciej Zworski, Chair

Berezin–Toeplitz operators are quantizations of functions on Kähler manifolds equipped
with a positive line bundle L. When the Kähler manifold M is compact, the quantization
procedure associates every smooth function f ∈ C∞(M) to a family of matrices TNf indexed
by N ∈ N, whose size goes to infinity as N → ∞ (corresponding to the semiclassical limit
h → 0). Each matrix TNf acts on the finite-dimensional space of holomorphic sections of
the Nth tensor power of L.

In this thesis we study the spectrum of TNf + δGω(N) where δ = δ(N) > 0 and Gω(N) is a
family of random matrices. Under certain conditions, the spectrum satisfies a probabilistic
Weyl law involving f and the volume form on the Kähler manifold. Specifically, as N → ∞,
the (normalized) empirical spectral distribution of TNf + δGω(N) converges weakly almost
surely to the (normalized) push-forward by f of the Liouville volume form on M . This
generalizes a result of Martin Vogel [Vog20], which considered the case of torii.

Proving this result requires extending the usual calculus of Berezin–Toeplitz operators to
an exotic class of functions. The exotic nature of these functions (classical observables)
refers to the property that their derivatives are allowed to grow in ways controlled by local
geometry and the power of the line bundle. The properties of this quantization are obtained
via careful analysis of the kernels of the operators using Melin and Sjöstrand’s method of
complex stationary phase. For this more exotic class of functions, we obtain a functional
calculus result, a trace formula, and a parametrix construction.
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Chapter 1

Introduction and statement of results

This thesis generalizes a theorem of Martin Vogel in [Vog20] which proved a probabilistic
Weyl law for quantizations of functions on tori. Here we do the same but with the tori
replaced by arbitrary compact Kähler manifolds equipped with positive line bundles.

In [Vog20], Vogel considered Toeplitz quantizations of smooth functions on a real 2d-
dimensional torus, which associates every smooth function f on the torus to a family of
Nd × Nd matrices, TNf , for all N ∈ N (here N−1 is the semi-classical parameter). Vogel
proved that if a random matrix with sufficiently small norm is added to TNf , then the
spectrum obeys an almost-sure Weyl law as N goes to infinity. This was conjectured by
Christiansen and Zworski in [CZ10] and is a major extension of their work.

This result is most striking when the unperturbed matrix is non-self-adjoint. For example,
if f(x) = cos(2πx) + i cos(2πξ), then the quantization is

TNf =



cos(2π/N) i/2 0 0 · · · i/2
i/2 cos(4π/N) i/2 0 · · · 0

0 i/2 cos(6π/N) i/2
. . . 0

...
. . . . . . . . . . . .

...
0 · · · 0 i/2 cos(2(N − 1)π/N) i/2
i/2 0 · · · 0 i/2 cos(2π)


,

which numerically has spectrum contained on two crossing lines in the complex plane. This
operator is aptly named the Scottish flag operator and is further described by Embree and
Trefethen in [ET05]. Interestingly, despite numerical evidence, there is no proof that the
spectrum of TNf is contained on these crossing lines for general N . However, this is being
addressed in ongoing work by the author with Frédéric Klopp and Shengtong Zhang [KOZon].
If randomly perturbed, the spectrum spreads out with density given by the push-forward
of the Lebesgue measure on the torus by f . Figure 1.1 plots the spectrum of TNf with no
perturbation and with a small perturbation. We can observe this same effect numerically
occurring when computing the spectrum of TNf for large values of N , suggesting that round-
ing errors in mathematical software behave like small random perturbations. For N < 100,
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numerically computed eigenvalues appear to lie on two crossed lines. For N > 100, the nu-
merically computed spectrum spreads out. For even N < 12, the eigenvalues can analytically
be shown to lie on the two crossed lines using Mathematica.

Figure 1.1: Left: Numerically computed eigenvalues of the Scottish flag operator with N =
50. Right: Numerically computed eigenvalues of the Scottish flag operator with a small
random perturbation with N = 1000.

The spectral properties of randomly perturbed non-self-adjoint operators were pioneered
by Mildred Hager in [Hag06], in which the operator hDx+g(x) : H

1(T1) → L2(T1) was stud-
ied. This result, and numerous subsequent results, were presented by Sjöstrand in [Sjö19].
There are related results describing spectral properties of randomly perturbed Toeplitz ma-
trices, which can be defined as quantizations of symbols on T2 with symbol independent of
x. See Davies and Hager [DH09], Guionnet, Wood and Zeitouni [GWZ14], Sjöstrand and
Vogel [SV21a; SV21b], and references given there.

The work in this thesis is a natural generalization of Vogel’s result in [Vog20]. We
prove a similar result for quantizations of functions on Kähler manifolds (with sufficient
structure, as discussed in Chapter 2). These quantizations, called Berezin–Toeplitz operators
(or just Toeplitz operators) were first described by Berezin in [Ber75] as a particular type
of quantization of symplectic manifolds. Following [Ber75], for every smooth function f on
a quantizable Kähler manifold X, we get a family of finite rank operators, TNf , indexed by
N ∈ N (see [Rou17] for a connection between these quantizations, and quantizations on the
torus) which have physical interpretations. Deleporte in [Del19, Appendix A] related this
quantization to spin systems in the large spin limit, and Douglas and Klevtsov in [DK10]
used path integrals for particles in a magnetic field to describe the Bergman kernel (a key
ingredient in constructing TNf).

Next, if we add a small Gaussian-type random perturbation Gω(N) to these operators
(see Definition 4.1.3), their empirical spectral measures weakly converge almost surely (see
Theorem 4.1.4 in §4.1 for a precise statement). Theorem 4.1.5 states a result about more gen-
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eral random perturbations Wω(N) (see Definition 4.1.3) but with a more restrictive coupling
constant. A consequence of Theorem 4.1.4 is the following probabilistic Weyl law.

Theorem 1.0.1 (A probabilistic Weyl law). Suppose we have a quantizable Kähler manifold
X, a function f ∈ C∞(X;C) such that there exists κ ∈ (0, 1], δ > 0 so that

µd(
{
x ∈ X : |f(x)− z|2 ≤ t

}
) = O(tκ) (1.0.1)

for t < δ uniformly for z ∈ C (where µd is the Liouville volume form on X), Gω(N) a family
of N×N Gaussian-type random matrix (see Definition 4.1.3), and an open set Λ ⊂ C. Then
for any p > d/2, almost surely(

2π

N

)d
#
{
Spec(TNf +N−pGω(N)) ∩ Λ

} N→∞−−−→ µd(x ∈ X : f(x) ∈ Λ). (1.0.2)

Here #A denotes the number of elements in a set A. It was observed in [CZ10] that if
f is real analytic, then (1.0.1) holds. See [CZ10], and references presented there, for further
discussion of (1.0.1).

Finer results are expected for describing the spectrum of randomly perturbed Toeplitz
operators. In [Vog20], precise statements about the number of eigenvalues were obtained
using counting functions of holomorphic functions. Here we only show weak convergence
of the empirical measures, but achieve this in a relatively simple way using logarithmic
potentials as presented in [SV21c].

Here we present numerical examples to motivate the main result of this thesis. Consider
the Kähler manifold CP1 (complex projective space of dimension 1) which can be identified
with the real 2-sphere with coordinates (x1, x2, x3) (see Example 2.2.1 and Appendix B
for details of the quantization procedure in this specific case). In Figure 1.2, we compute
the spectrum of the quantization of the function f(x1, x2, x3) := x1 + 2x22 + ix2. Before
perturbation, the spectrum lies on several lines in the complex plane, somewhat analogous
to the Scottish flag operator. However, as a perturbation is added, the spectrum spreads
out. This thesis describes the structure of the spectrum of this perturbed operator in the
semiclassical limit, as N → ∞. A rotated version of the spectrum of a perturbation of
TN(x1 + 2x22 + ix2) with N = 10, 000 is displayed on the dedication page of this thesis.

Numerical verification of this thesis’ result can be seen if f = ix1 + x2 (still on CP1).
Figure 1.3 displays the spectrum of TNf with a random perturbation added, and plots the
number of eigenvalues in circles of increasing radii versus the predicted number of such
eigenvalues by (1.0.2). More numerics are presented in Appendix B.3 and animations can
be found on the author’s website1.

To put these results in context, we recall that Berezin introduced the concept of Toeplitz
operators in [Ber75] to quantize smooth functions (classical observables) on smooth com-
pact symplectic manifolds (classical phase spaces). This generalizes a more straightforward

1https://math.berkeley.edu/~izak/research/toeplitz/movies.html or YouTube (https://www.
youtube.com/watch?v=tBvpozWA3bY&list=PLlWY1dHxyE0c3ihYylV7Mcx0GevGGduis&pp=gAQBiAQB)

https://math.berkeley.edu/~izak/research/toeplitz/movies.html
https://math.berkeley.edu/~izak/research/toeplitz/movies.html
https://www.youtube.com/watch?v=tBvpozWA3bY&list=PLlWY1dHxyE0c3ihYylV7Mcx0GevGGduis&pp=gAQBiAQB
https://www.youtube.com/watch?v=tBvpozWA3bY&list=PLlWY1dHxyE0c3ihYylV7Mcx0GevGGduis&pp=gAQBiAQB


CHAPTER 1. INTRODUCTION AND STATEMENT OF RESULTS 4

Figure 1.2: Left: Numerically computed eigenvalues of the Toeplitz operator on CP1 iden-
tified with the real 2-sphere with symbol x1 + 2x21 + ix2 and N = 50. Right: Numerically
computed eigenvalues of the same operator plus a small random perturbation and N = 1000.

Figure 1.3: Left: Numerically computed eigenvalues of the randomly perturbed Toeplitz
operator on CP1 identified with the real 2-sphere with symbol ix1 + x2 and N = 2000.
Right: The number of eigenvalues within circles in the complex plane centered at zero with
radii ranging from 0 to 1, plotted against the predicted distribution of eigenvalues from
(1.0.2).

quantization of functions on T2d := (R/2πZ)2d × (R/2πZ)2d. When d = 1, we can think of
the coordinate on the first circle, x ∈ T, as the position variable, and the coordinate on the
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second circle, ξ ∈ T, as the momentum variable. Functions F = F (x) and G = G(ξ) are
quantized as

OpN(F ) := diag
(
F (2πj/N)N−1

j=0

)
, OpN(G) := F ∗

Ndiag
(
G(2πj/N)N−1

j=0

)
FN ,

where FN is the unitary discrete Fourier transform on ℓ2(ZN). This can be generalized to
arbitrary functions f ∈ C∞(T2). If we consider T2 as a complex curve and take as L the
theta bundle over it, one can show that OpN(f) = TNf+O(N−∞) (see for instance [Rou17]).
We should also mention that discretizations used in some numerical schemes correspond to
Toeplitz quantization on tori (see for instance [BF22]).

Berezin–Toeplitz quantization of functions on tori have been used as a discrete model
of quantum mechanics in both mathematics and physics literature, see for instance [BO23]
for a recent application and for pointers in the literature. The physical (rather than purely
mathematical) motivation for considering general Kähler manifolds with positive line bundles
is less clear. We mention however that Anderson in [And12] and Marché and Paul in [MP15]
studied Toeplitz operators in the context of topological quantum field theory. Deleporte
[Del19] also used Toeplitz operators to model spin systems in the large spin limit. In [DK10],
Douglas and Klevstov derived the Bergman projector parametrix for large N , which is central
to the properties of Toeplitz quantization, using path integrals for particles in a magnetic
field.

Extending Vogel’s result to Berezin–Toeplitz operators required developing an exotic
calculus of functions on Kähler manifolds. Specifically we consider operators of the form
χ(N2δTNf) where χ is a smooth cut-off function, f ∈ C∞(X;C), and δ ∈ [0, 1/2). This
requires a composition formula for Toeplitz operators for functions of the form N2δf . To
develop this calculus, the kernel of N2δTNf is asymptotically expanded using the Bergman
kernel approximation from [BBS08]. The resulting integral is then approximated by Melin
and Sjöstrand’s method of complex stationary phase from [MS75].

This exotic class of functions is described as follows. We let f depend on N , and allow its
derivatives to grow in N similarly to the classes Sδ(1) in the case of quantization on Rd×Rd

(see [Zwo12, §4.4]):

f ∈ Sδ(1) ⇐⇒ ∂αf = Oα(N
δ|α|).

In the Kähler setting we consider differentiation on a fixed finite set of coordinate patches
(see Definition 3.2.3). As in the quantization on Rd × Rd we need an additional flexibility
of allowing order functions in our symbol classes. This is crucial for our main applications
in Chapter 4. The order functions, m, are defined on δ scales by demanding that for all
x, y ∈ X,

m(x) ≤ Cm(y)(1 +N δ dist(x, y))M0

for some constants C,M0 > 0, and δ ∈ [0, 1/2). Then we define f ∈ Sδ(m) if and only if
∂αf = O(N δ|α|m) on each coordinate patch.

Chapter 3 develops a calculus of Toeplitz operators quantizing functions belonging to
these more exotic symbol classes. A rough formulation is given as follows.
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Theorem (An exotic calculus of Berezin–Toeplitz operators). Suppose that δ ∈ [0, 1/2),
m1,m2 are δ-order functions on a quantizable Kähler manifold X, f ∈ Sδ(m1), and g ∈
Sδ(m2) (see §3.2 for definitions). Then

1. The Schwartz kernels of TNf and TNg admit asymptotic expansions.

2. There exists h ∈ Sδ(m1m2) such that TNf ◦ TNg = TNh+ O(N−∞).

The analog of this result in the setting of tori can be obtained by using methods already
available for the standard quantization in Rd (see [CZ10]).

The precise statement for 1 and 2 are given in Theorem 3.3.1 and Theorem 3.3.11 respec-
tively. Applications to functional calculus are given in Theorem 3.4.2 and to trace formulas
in Theorem 3.4.5. Coefficients in the expansion of h are given Appendix A. More details are
also provided at the end of this section.

An essential ingredient needed to prove this exotic calculus is the asymptotic expansion
of the kernel of the Bergman projector ΠN . It was provided by Catlin [Cat99] and Zelditch
[Zel98] using the Bergman-Szegö kernel parametrix for strictly pseudoconvex domains ob-
tained by Boutet de Monvel and Sjöstrand [BS75] and extended earlier work by Fefferman
[Fef74]. A direct approach to produce a Bergman kernel expansion for powers of positive
line bundles was given by Berman, Berndtsson, and Sjöstrand [BBS08], and another direct
approach without relying on the Kuranishi trick was provided by Hitrik and Stone [HS22].

Similar exotic calculi have proven themselves useful in PDE problems from mathematical
physics, for instance, long time Egorov theorem, resonance counting, or resolvent estimates.

Composition results for Toeplitz operators of uniformly (in N) smooth functions are
now standard. They are discussed by Le Floch in [LeF18], Charles in [Cha03], Deleporte
in [Del19], Ma and Marinescu in [MM12], and references given there. In Appendix A, we
present a direct computation of the second term in the composition formula, proving the
classical-quantum correspondence for Toeplitz operators.

1.1 Statement of results

In the following results, we assume (X,ω) is a quantizable Kähler manifold of dimension d
with volume form µd := ω∧d/d!. The symbol class S(1) as mentioned in the introduction is
defined in Definition 4.1.2 and is equivalent to S0(1) as defined in Definition 3.2.3.

The following two theorems are proven in Chapter 4.

Theorem (Weyl law for Gaussian perturbations). Suppose f ∈ S(1) is such that there exists
κ ∈ (0, 1] such that

µd({x ∈ X : |f0(x)− z|2 ≤ t}) = O(tκ)

as t→ 0 uniformly for all z ∈ C and {Gω(N) : N ∈ Z≥1} is a family of random operators on
H0(X,LN) whose matrix elements with respect to a fixed basis are i.i.d. complex Gaussian
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random variables with mean 0 and variance 1. Then for each ε > 0 there exists β = β(ε) ∈
(0, 1) and C > 0 such that if δ = δ(N) satisfies

Ce−N
β

< δ < C−1N−d/2−ε (1.1.1)

then we have almost sure weak convergence of the empirical measures of TNf + δGω(N) to
vol(X)−1(f0)∗µd.

More precisely, if λi = λi(N,ω) are the (random) eigenvalues of TNf + δGω(N), then for
all φ ∈ C∞

0 (C)

1

N

N∑
i=1

φ(λi)
N→∞−−−→ 1

vol(X)

ˆ
C
φ(z)((f0)∗µd)(dz) (1.1.2)

almost surely, where (f0)∗µd is the push-forward of the volume form µd on X by f0.
Moreover, for each ε > 0, the constant β(ε) in (1.1.1) can be chosen at most strictly less

than {
2ϵκ if ϵ < 1

2(κ+1)
κ
κ+1

if ϵ ≥ 1
2(κ+1)

.

Almost sure convergence in the context of random matrices requires explanation. There is
a probability space (Ω,F ,P) such that for each ω ∈ Ω andN ∈ N, Gω(N) is anN×N matrix.
For each N , the entries of Gω(N) are i.i.d. Gaussian random variables. The expression in
(1.1.2) means that there is a full measure set of ω ∈ Ω such that the limit holds.

This theorem can be extended to a more general class of random perturbations, as stated
below.

Theorem (Weyl law for more general perturbations). Suppose f ∈ S(1) is such that there
exists κ ∈ (0, 1] so that

µd(
{
x ∈ X : |f(x)− z|2 ≤ t

}
) = O(tκ)

as t→ 0 uniformly for z ∈ C and {Wω(N) : N ∈ Z≥1} is a family of operators on H0(X,LN)
whose entries with respect to a fixed basis are i.i.d. copies of a complex random variable with
mean zero and bounded second moment. Then if Λ ⊂ C is an open set, almost surely(

2π

N

)d
#
{
Spec(TNf +N−dWω(N)) ∩ Λ

} N→∞−−−→ µd(x ∈ X : f(x) ∈ Λ).

In the next series of results (proven in Chapter 3), we assume δ ∈ [0, 1/2) is fixed, m1

and m2 are two δ-order functions on X, f ∈ Sδ(m1), and g ∈ Sδ(m2) (see Definition 3.2.3).
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Theorem (Composition formula). There exists h ∈ Sδ(m1m2) such that

∥TN,h − TN,f ◦ TN,g∥L2(X,LN )→L2(X,LN ) = O(N−∞). (1.1.3)

Moreover if h is asymptotically written h ∼
∑∞

j=0N
−(1−2δ)jhj (see Definition 3.2.4) then

locally

h0(x) = f(x)g(x) + O(N−(1−2δ)m1(x)m2(x)) (1.1.4)

h1(x) = −
d∑

j,k=1

(∂∂φ(x))j,k∂kf(x)∂jg(x) + O(N−2(1−2δ)m1(x)m2(x)) (1.1.5)

where (∂∂φ(x))j,k is such that
∑

k(∂∂φ(x))
j,k(∂k∂ℓφ(x)) = δj,ℓ for j, ℓ = 1, . . . , d.

Theorem (Trace formula). If f ∼
∑
N−(1−2δ)jfj, then

Tr(TN,f ) =

(
N

2π

)d ˆ
X

f0(x) dµ(x) +

(ˆ
X

m(x) dµ(x)

)
O(Nd−(1−2δ)). (1.1.6)

Theorem (Existence of a parametrix). Suppose m1 ≥ 1 and there exists C > 0 such that
|f(x)| > Cm1(x) for all x ∈ X. Then there exists p ∈ Sδ(m

−1
1 ) such that

TN,f ◦ TN,p + O(N−∞) = TN,p ◦ TN,f + O(N−∞) = 1. (1.1.7)

Theorem (Functional calculus). Suppose for x ∈ X, f(x) ∈ R≥0 and there exists C > 0
such that |f(x)| ≥ C−1m1(x) − C. Then for each χ ∈ C∞

0 (R;C), there exists q ∈ Sδ(m
−1)

such that

χ(TN,f ) = TN,q + O(N−∞) (1.1.8)

and the principal symbol of q is χ(f0) + O(N−(1−2δ)) where f0 is the principal symbol of f .

Equation (1.1.3) is proven in Theorem 3.3.11, equation (1.1.4) is proven in Theorem 3.3.1,
equation (1.1.5) is proven in Theorem A.1.1, equation (1.1.6) is proven in Theorem 3.4.5,
equation (1.1.7) is proven in Theorem 3.4.1, and equation (1.1.8) is proven in Theorem 3.4.2.

There are two main difficulties in applying Melin and Sjöstrand’s method of complex
stationary phase to our case. First, the amplitude in our integrals is unbounded in N , and
so any almost analytic extension will also be unbounded in N . This growth is carefully
controlled by the Gaussian decay of the phase. Second, the critical point of the almost ana-
lytically extended phase, which is already an almost analytic extension, must be estimated
for proper control of terms in the stationary phase expansion.

Outline of thesis.

1. Chapter 2 reviews preliminaries for this thesis. There is a brief discussion on what
quantizations are (§2.1) followed by the procedure of quantizing Kähler manifolds to
build Berezin–Toeplitz operators (§2.2).
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2. Chapter 3 builds an exotic calculus of Berezin–Toeplitz operators, establishing techni-
cal framework to prove a probabilistic Weyl law. This is done by first defining a new
symbol class Sδ(m) (§3.2). In §3.3 we apply the method of complex stationary phase
to construct an asymptotic expansion of the kernel of Toeplitz operators whose symbol
is in Sδ(m), which leads to a composition formula (this is also done in the simpler
case of C in §A.2.1). In §3.4, this composition formula is used to prove a parametric
construction, a functional calculus, and a trace formula.

3. Chapter 4 proves the probabilistic Weyl law for randomly perturbed Berezin–Toeplitz
operators. §4.1 reviews background material and states the main result of this thesis
(Theorem 4.1.4). §4.2 reviews logarithmic potentials and reduces Theorem 4.1.4 to
proving a probabilistic bound involving logarithmic derivatives of Toeplitz operators.
§4.3 sets up a Grushin problem to further reduce the problem to prove probabilistic
bounds on spectral properties of self-adjoint operators. §4.4 proves a deterministic
bound involving the logarithmic derivative of Toeplitz operators. The technique in-
volves scaling the symbol by a power of N , and therefore relies on the exotic calculus
presented in Chapter 3. Finally, §4.5 chooses constants to establish the required prob-
abilistic bound for the almost sure convergence in Theorem 4.1.4. In §4.6, we describe
how to extend this result to the more general random perturbations as stated in The-
orem 4.1.5.

4. In Appendix A, the second term in the star product of Toeplitz operators is computed.

5. In Appendix B, several Toeplitz operators on CP1 are explicitly computed and numerics
are presented.

Notation. We will use the following notation in this thesis for functions f and g depending
on N . We write f = O(g) if there exists C > 0 independent of N such that |f | ≤ Cg. We
write f = O(N−∞) if for everyM ∈ N, f = O(N−M). Any subscript in the big-O will denote
dependence of C of what is in the subscript. We will write f ≲ g if there exists a C > 0
independent of N such that f ≤ Cg. We similarly write f ≲α g if the constant C depends
on a parameter α. We write f ≪ g to mean that Cf ≤ g for some sufficiently large C > 0
independent of N . For a u, v, w elements of a Hilbert space, denote u⊗v the map that sends
w to u ⟨w, v⟩. We use the standard multi-index notation with the following twist: if α ∈ N2d

and f ∈ C∞(Cd;C), then ∂αx,x̄f(x) :=
(∏d

j,k=1 ∂
αj
xj ∂

αk+d
x̄k f

)
(x), where ∂x :=

1
2
(∂Re(x)− i∂Im(x))

and ∂x̄ :=
1
2
(∂Re(x) + i∂Im(x)) are the holomorphic and anti-holomorphic derivative operators

respectively.

Publications. This thesis covers two papers written by the author during his PhD. Chapter
3 follows [Olt22] and chapter 4 follows [Olt23].

Not included in this thesis, but written during the author’s PhD are: [BO23], [BOV23],
and [BOV24].
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Chapter 2

Preliminaries

2.1 Quantization

Before discussing quantizing Kähler manifolds, we discuss briefly what quantizations are.
Quantizations are a way of connecting classical and quantum theories. In classical mechan-
ics, a state is represented by a point in a symplectic manifold (or just R2d for simplicity).
A classical observable, like energy, is a smooth function on this symplectic manifold. In
quantum mechanics, a state is represented by an element of a Hilbert space (or just an ele-
ment of L2(Rd) for simplicity). A quantum observable is an operator on this Hilbert space.
Quantizations are maps from the classical observables to the quantum observables.

Two examples to keep in mind are the quantum and classical harmonic oscillators.

Example 2.1.1 (Harmonic Oscillators). A classical harmonic oscillator is a system mod-
eling the position of a particle x(t) : R≥0 → R which has a restoring force proportional to its
displacement. That is x(t) must satisfy the ordinary differential equation:

(∂2t + k2)x(t) = 0 (2.1.1)

for some fixed k > 0, which has a basis of solutions {sin(kt), cos(kt)}. The total energy of
this system is the sum of the kinetic and potential energy: 1

2
(∂tx(t))

2 + 1
2
k2x(t)2. We then

have a classical Hamiltonian H(p, q) : R2 → R≥0 given by H(p, q) := 1
2
p2 + 1

2
k2q2. Solutions

to (2.1.1) can be alternatively found by finding trajectories (p(t), q(t)) : R≥0 → R2 solving:

∂tq(t) = ∂pH,

∂tp(t) = −∂qH.

The first equation tells us that ∂tq(t) = p, so that ∂2t q(t) = −k2q(t) which coincides with
(2.1.1). Another way to view this is: for any fixed energy E ≥ 0, a solution to the harmonic
oscillator is a curve on the ellipse H = E in phase space.

A quantum harmonic oscillator is constructed by first defining the quantized Hamilto-
nian Ĥ by replacing p with h

i
∂x (where h ∈ R>0 is a small parameter) and q by the operator
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Figure 2.1: Here we solve (−h2∂2x + x2)ψ(x) = Eψ(x) for fixed energy E = 1 and decreasing
values of h. The blue curve is |ψ|2 (representing the probability of finding a particle at
different x values) and the vertical dotted lines are at the classical turning points (x = ±1).
As h↘ 0, the probability of finding the quantum particle is largest near the turning points,
and smallest near x = 0, similar to the classical harmonic oscillator.

which multiplies by x. That is:

Ĥ := −1

2
h2∂2x +

1

2
k2x2.

Time-independent solutions to the quantum harmonic oscillator are ψ ∈ L2(R) solving

Ĥψ = Eψ. (2.1.2)

Integrating |ψ|2 over a set A ⊂ R tells us the probability of finding a quantum state in A.
Solutions to (2.1.2) are so-called Hermite functions, and can only be constructed if E =
hk(n + 1/2) for some n ∈ Z≥0 [Hal13, Theorem 11.3]. In this way, the quantum system
differs from the classical system in that there are only certain quantized allowed energies.

Despite this, the classical and quantum harmonic oscillators are linked in many ways,
satisfying the so-called correspondence principle. One way this correspondence shows up is
by fixing an energy E, and finding a solution to the classical harmonic oscillator x(t) with
energy E. Then for each h ∈ R>0 such that 1/(hk)− 1/2 ∈ Z≥0, we find a solution ψh(x) to
(2.1.2). Then it can be shown that the behavior of ψh(x) approximates the behavior of x(t)
as h→ 0. Specifically, the probability of finding the quantum particle near the turning points
E = 1

2
k2x2, is higher than the probability of finding the quantum particle at x = 0 [Hal13,

Chapter 15]. This agrees with the classical model, as the probability of finding x(t) at the
points E = 1

2
k2x2 is highest as this is where the particle’s velocity vanishes (see also Figure

2.1)

In general, a quantization procedure should take a function on a symplectic manifold and
get a family of operators on an associated Hilbert space indexed by a small positive number
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h. Such a quantization should have certain natural properties. For one, the procedure
should be linear. Real-valued functions should be quantized to self-adjoint operators. And
the symplectic structure should be captured in the quantization procedure. Explicitly, if f̂
is the quantization of f , then it is natural to require:

{f, g} =
1

ih
[f̂ , ĝ] (2.1.3)

where {·, ·} is the Poisson bracket and [·, ·] is the commutator. Such an equality actually
cannot hold (see the Groenewold-van Hove Theorem [Gro46]), so instead we require (2.1.3)
to hold with an error going to zero in h.

The prototypical example to keep in mind is the Weyl-quantization originally introduced
by Hermann Weyl in 1927 [Wey27] (see [Zwo12, §4.2] for a textbook presentation) which
quantizes f ∈ C∞(T ∗Rd) as Opwh (f) : L

2(Rd) → L2(Rd). In this setting, f(x, ξ) is a smooth
function on R2d where x ∈ Rd should be thought of as the position and ξ ∈ Rd should be
thought of as the momentum. The Weyl-quantization of f applied to a suitable function
u ∈ C∞(Rd) is given by

Opwh (f)u(x) =
1

(2πh)d

ˆ
Rd

ˆ
Rd

e
i
h
(x−y)·ξf

(
x+ y

2
, ξ

)
u(y) dξ dy.

In the case of Kähler manifolds, the quantization procedure is slightly more involved.
In fact, not every Kähler manifold has the following quantization procedure. Such Kähler
manifolds who admit this quantization are called quantizable.

2.2 Geometric preliminaries

Here we review the geometric objects needed in this thesis. Two very useful references are
Alix Deleporte’s thesis [Del19] and Yohann Le Floch’s textbook [LeF18]. We also thank
Garrett Brown for the helpful discussions as well as the many comments, suggestions, and
corrections he made in reading an earlier draft.

The way we get quantized Kähler manifolds goes as follows: we begin with a complex
compact manifold, we assume there exists a positive line bundle, this provides a Kähler
metric making the manifold Kähler and allows us to build a Hilbert space and procedure to
quantize smooth functions on the manifold.

Definition 2.2.1 (Complex manifold). M is a complex manifold of dimension d if the
following holds.

1. M is Hausdorff and second countable.

2. There exist a collection of open sets Ui ⊂ M and homeomorphisms ρj : Uj → Cd such
that M =

⋃
Uj.
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3. If Uj ∩ Uk ̸= ∅, then ρj ◦ ρ−1
k is holomorphic on ρk(Uj ∩ Uk).

Such a set {Uj, ρj} is called an atlas.

On a d-dimensional complex manifold, consider a fixed chart (U, ρ), and let

ρ = (z1, . . . , zd) = (x1 + iy1, . . . , xd + iyd)

where xi = Re (zi) and yi = Im (zi). Then the tangent space at each point is a real 2d-
dimensional vector space spanned by the basis element ∂xj , ∂yj for j = 1, 2, . . . , d. There
exists a smooth endomorphism on the tangent bundle, J , called the complex structure defined
by sending ∂xj to ∂yj and ∂yj to −∂xj .

The complex structure is diagonalized by choosing a new basis for the complexified tan-
gent space (TpM ⊗ C) by defining ∂zj :=

1
2
(∂xj − i∂yj) and ∂zj :=

1
2
(∂xj + i∂yj). In this way

J sends ∂zj to i∂zj and ∂zj to −i∂zj .
Then we define the holomorphic tangent bundle of M restricted to U as:

T 1,0M |U := Span(∂zj : j = 1, . . . , d)

and the anti-holomorphic tangent bundle of M restricted to U as:

T 0,1M |U := Span(∂zj : j = 1, . . . , d).

On overlapping atlases, the transition functions are holomorphic, so that these spaces are
preserved. Therefore we can globally define T 1,0M and T 0,1M thus decomposing TM ⊗ C
into a holomorphic and anti-holomorphic bundle.

Dual to these local basis vectors ∂zj and ∂zj are one-forms dzj := dxj + i dyj and dz̄j :=
dxj − idyj respectively. This allows us to again decompose the cotangent bundle into a
holomorphic and anti-holomorphic bundle.

We ultimately want to build a Hilbert space of some sort of holomorphic functions on a
complex manifold. Note that if the manifold is compact and connected, then this will consist
only of constant functions. We therefore have to be a little more clever, and instead consider
holomorphic sections of a well-chosen holomorphic line bundle over our manifold.

Definition 2.2.2 (Holomorphic line bundle). A holomorphic line bundle over a complex
manifold M is a tuple (L, π) where L is a complex manifold, π : L→M is holomorphic such
that:

1. For each m ∈M , π−1(m) is a 1-dimensional complex vector space.

2. There exist open sets {Ui : i ∈ I } and biholomorphisms {τi : i ∈ I } where τi : Ui ×
C → π−1(Ui) and for each m ∈ Ui, z 7→ τi(m, z) is a linear isomorphism.

Here (Ui, τi) are called local trivializations.
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A line bundle can be completely described by defining its transition functions. That is,
if (Ui, τi), (Uj, τj) are local trivializations such that Ui ∩ Uj = ∅, then there exists a smooth
function fi,j ∈ C∞(Ui ∩ Uj;C \ 0) such that

τj(m, 1) = fi,j(m)τi(m, 1)

for m ∈ Ui ∩ Uj. Such an fi,j is called a transition function, and if (Uk, τk) is a third local
trivialization such that Uk ∩ Uj ∩ Ui = ∅, then:

fi,k = fi,jfj,k (2.2.1)

on Uk ∩ Uj ∩ Ui. It turns out that defining transition functions that satisfy the cocycle
relation (2.2.1) completely describes the line bundle. And if such f ′

i,js are holomorphic, the
line bundle is as well [LeF18, Proposition 3.1.4, 3.1.5].

Definition 2.2.3 (Section of a line bundle). A section of a line bundle L over M , is a map
s : M → L such that for all m ∈ M , π(s(m)) = m. Denote the space of smooth sections of
L over M as Ω0(L,M).

Any smooth section s can be described locally on each trivialization Ui by smooth func-
tions si as:

s(m) = si(m)τi(m, 1)

for m ∈ Ui. If Ui ∩ Uj ̸= ∅, then for m ∈ Ui ∩ Uj

si(m)τi(m, 1) = s(m) = sj(m)τj(m, 1) = sj(m)fi,j(m)τi(m, 1)

so we require that si(m) = sj(m)fi,j(m) on Ui ∩ Uj.

Definition 2.2.4 (Hermitian holomorphic line bundle). A Hermitian holomorphic line bun-
dle over a complex manifold M is a holomorphic line bundle (L, π) over M with a smoothly
varying Hermitian metric h on fibers. That is:

1. For each m ∈M , hm(·, ·) is a Hermitian metric on π−1(m).

2. If s is a smooth section on M , then m 7→ hm(s(m), s(m)) is smooth.

A Hermitian metric on L can be described locally on each trivialization Ui by hi(m) :=
hm(τi(m, 1), τi(m, 1)) for m ∈ Ui. Here the polarization identity is used to reconstruct the
Hermitian metric.

If Ui, Uj are trivializations with nonempty intersection, then:

hi(m) = hm(τi(m, 1), τi(m, 1)) = hm(fj,i(m)τj(m, 1), fj,i(m)τj(m, 1))

= |fj,i(m)|2hj(m).
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Definition 2.2.5 (Strictly plurisubharmonic). Give a smooth function f ∈ C∞(U ;C) for
U and open subset of Cd, we say f is strictly plurisubharmonic on U if there exists a c > 0
such that for all t ∈ Cd \ {0}

d∑
j,k=1

∂zj∂zkf(z)t̄jtk > c

d∑
j=1

|tj|2

for all z ∈ U .

In other words, f is strictly plurisubharmonic on U if in local coordinates the matrix
∂∂f is uniformly positive definite.

Given a smooth function f ∈ C∞(M ;C), the exterior derivative d can be written as
d = ∂ + ∂ where locally

∂f =
d∑
j=1

∂zjf dzj and ∂f =
d∑
j=1

∂zjf dz̄j.

We can compute ∂∂f as:

∂

(
d∑
j=1

∂zjf dzj

)
=

d∑
j,k=1

∂zk∂zjf dz̄k ∧ dzj

= −
d∑

j,k=1

∂zk∂zjf dzk ∧ dz̄j

= −∂∂f

which is a two-form. We can therefore similarly define a smooth function f to be strictly
plurisubharmonic on an open set U if there exists a c > 0 such that for all m ∈ M and
v =

∑
vj∂zj ∈ T 1,0

m M nonzero,

∂∂f(m)(v, v̄) > c

d∑
j=1

|vj|2.

Definition 2.2.6 (Positive Hermitian line bundle). Given a holomorphic Hermitian line
bundle L over M with Hermitian metric h locally given by hj(m) = hm(τ(m, 1), τ(m, 1)) for
m ∈ Uj over each trivialization (Uj, τj), then we say h is positive if

hj(x) = e−φj(x)

where each φj is strictly plurisubhamonic for each j.
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Given a positive Hermitian line bundle with Hermitian metric h,

ω := −i∂∂ log(hj) = i∂∂φj (2.2.2)

defines a globally defined symplectic form over M . Indeed, on overlapping trivializations,
have hi(m) = |fi,j(m)|2hj(m), so we require:

∂∂ log(hi(m))− ∂∂ log(hj(m)) = 0

which requires showing that

∂∂ log(|fi,j(m)|2) = 0

but this follows using that fi,j is holomorphic.
Now because ω is closed (using that d = ∂+ ∂) and non-degenerate (because log(−hj) is

strictly plurisubharmonic) ω is a symplectic form.
One can check that for all X, Y ∈ TM :

ω(JX, JY ) = ω(X, Y ) and ω(X, JX) > 0 (2.2.3)

for X ̸= 0. Indeed we will check the second inequality. Let X =
∑d

j=1 aj∂xj + bj∂yj so that

JX =
∑d

j=1−bj∂xj + aj∂yj . Note that ∂xj = ∂zj + ∂zj and ∂yj = i(∂zj − ∂zj) so that

X =
d∑
j=1

(aj + ibj)∂zj + (aj − ibj)∂zj

JX =
d∑
j=1

(−bj + iaj)∂zj + (−bj − iaj)∂zj

We then compute

ω(X, JX) = i

d∑
j,k=1

∂zj∂zkφ dzj ∧ dz̄k(X, JX)

= i
d∑

j,k=1

∂zj∂zkφ ((aj + ibj)(−iak − bk)− (ak − ibk)(−bj + iaj)) .

Let uj = a+ ibj, so that:

ω(X, JX) = i

d∑
j,k=1

∂zj∂zkφ (uj(−iūk)− ūk(iuj))

= 2
d∑

j,k=1

∂zj∂zkφujūk > 0
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by plurisubharmonicity of φ.
A symplectic form, ω, satisfying (2.2.3) and such that dω = 0 (which follows from

defining ω in (2.2.2)) is said to be compatible with the complex structure of M . Such a pair
(M,ω) is a Kähler manifold and φj is called the Kähler potential.

Given such a Kähler manifold, (M,ω) one can easily check that:

gm(u, v) := ωm(u, Jv)

defines a Riemannian metric on M for m ∈M , u, v ∈ TmM .

Remark 2.2.1. The definition of positive is slightly unmotivated (and confusing) without
more context. Very briefly, given a holomorphic Hermitian line bundle, there exists a unique
connection ∇ (ie way of taking derivatives of sections) called the Chern connection. One can
locally compute the curvature of this connection as curv(∇) = ∂∂φj (which is notably not a
positive form). However, ω = i curv(∇) is a positive form in the sense that ω(X, JX) > 0
for X ∈ TM nonzero. The motivation is that we want to define g(X, Y ) := ω(X, JY ) to be
a Riemannian metric, which requires positivity of ω.

Definition 2.2.7 (Tensor power of a Line bundle). Given a holomorphic Hermitian line
bundle L over M with Hermitian metric h, for each N ∈ N, one can define the N th tensor
power of L, denoted by LN , as a new holomorphic line bundle LN over M . Moreover, if fij
are transition functions for trivializations of L, then fNij are transition functions for LN and
so hN defines a Hermitian metric for LN .

Definition 2.2.8 (H0(M,LN)). Given a positive Hermitian holomorphic line bundle L over
a d-dimensional complex manifold M with Hermitian metric h, let LN be the N th ten-
sor power of L with Hermitian metric hN . Let ω be the symplectic form given locally by
−i∂∂(log(hj)). Let L2(M,LN) the completion of smooth sections of LN with respect the the
inner-product

⟨u, v⟩L2
N
:=

ˆ
M

hm(u(m), v(m))

∣∣ω∧d
∣∣ (dm)

d!
.

Then H0(M,LN) is the subspace of L2(M,LN) of holomorphic sections.

In fact, a simple argument [LeF18, Proposition 4.2.3] can be used to show thatH0(M,LN)
is finite-dimensional. More specifically, dim(H0, LN) ≍ Nd (see for instance [LeF18, Theorem
4.2.4]).

Definition 2.2.9 (Bergman projector). Given the objects in Definition 2.2.8, let ΠN be the
orthogonal projection from L2(M,LN) to H0(M,LN) (called the Bergman projector).

Definition 2.2.10 (Berezin–Toeplitz operator). Given the objects in Definition 2.2.8, f ∈
C∞(M). Then the Berezin–Toeplitz operator associated to f is the family of operators,
indexed by N ∈ N, defined as:

TNf : H
0(M,LN) ∋ u 7→ ΠN(fu) ∈ H0(M,LN).
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Example 2.2.1 (Complex projective space). In this example, we work through this quan-
tization procedure in the explicit example of the complex projective space of one dimension:
CP1. This should be viewed as the prototypical example of a quantizable Kähler manifold.
Indeed, by the Kodaira embedding theorem, every quantizable Kähler is embedded in CPn
once a sufficiently large power of the line bundle is taken.

CP1 is the space C2 \ (0, 0) with the equivalence relation:

(z1, z2) ≡ (z′1, z
′
2) ⇐⇒ ∃c ∈ C \ {0} : (z1, z2) = c(z′1, z

′
2).

Elements of CP1 are denoted by [(z1, z2)]. We can define an atlas with two charts in the
following way.

U1 :=
{
[(z1, z2)] ∈ CP1 : z1 ̸= 0

}
U2 :=

{
[(z1, z2)] ∈ CP1 : z2 ̸= 0

}
and

ρ1 : U1 ∋ [(z1, z2)] 7→
z2
z1

∈ C

ρ2 : U2 ∋ [(z1, z2)] 7→
z1
z2

∈ C.

Over CP1 we define the holomorphic line bundle O(−1) (called the tautological line
bundle) by essentially associating to every point (z1, z2) ∈ CP1, the complex line λ(z1, z2) for
λ ∈ C.

Concretely, define (for z = (z1, z2) ∈ C2)

O(−1) :=
{
([z], ξ) ∈ CP1 × C2 : ξ = Cz

}
with the projection π([z], ξ) := [z]. The trivializations are defined on U1 and U2 by:

τ1 : U1 × C ∋ ([z], ξ) 7→ ([z], (ξ, ξ(z2/z1))) ∈ π−1(U1),

τ2 : U2 × C ∋ ([z], ξ) 7→ ([z], (ξ(z1/z2)), ξ) ∈ π−1(U2).

The transition functions (which completely describe the line bundle) must satisfy:

τj([z], 1) = fi,j([z])τi([z], 1)

for [z] ∈ U1 ∩ U2. Replacing j by 1 and i by 2, we have the relation

([z], (1, (z2/z1))) = f2,1([z])([z], ((z1/z2), 1))

so that f2,1([z1, z2]) = z2/z1 (and by symmetry f1,2([z1, z2]) = z1/z2).
The line bundle we use for defining Toeplitz operators on CP1 is the dual of O(−1),

which is denoted by O(1). This is the line bundle such that each fiber O(1)[z] is dual to
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O(−1)[z]. Let τ̃j and f̃i,j be the trivializations and transition functions respectively of O(1).

Let [z] ∈ U1 ∩ U2 and ζ, ζ̃ ∈ C. Then we have:

τ̃1([z], ζ̃) = f̃2,1([z])τ̃2([z], ζ̃),

τ1([z], ζ) = f2,1([z])τ2([z], ζ).

Let ⟨·, ·⟩ the pairing of an element in O(−1)[z] and its dual. We therefore require:〈
ζ, ζ̃
〉
= f̃2,1([z])f2,1([z])

〈
ζ̃ , ζ̃
〉

Therefore the transitions functions on O(1) are:

f̃2,1([z]) =
1

f2,1([z])
=
z1
z2

and by symmetry f̃1,2([z]) = z2/z1.
A Hermitian metric on O(1) is locally given by hi([z]) on Ui and must satisfy, for

[z] ∈ U1 ∩ U2:

h1([z]) = |f2,1([z])|2h2([z]) =
∣∣∣∣z1z2
∣∣∣∣2 h2([z]).

One example of such a metric is:

hi([z]) :=
|zi|2

|z1|2 + |z2|2

for i = 1, 2.
We next check that this is a positive line bundle, which requires checking that

∂z∂z(− log(hj([z])))(u, ū) > c|u|2

for u ∈ T 1,0
[z] (CP

1) nonzero. In coordinates x ∈ C on U1, this is:

∂x∂x(− log(h1([z]))) = ∂∂x(log((1 + |x|2)))

= ∂x

(
x

(1 + |x|2)
dx̄

)
=

1

(1 + |x|2)2
dx ∧ dx̄.

If u ∈ T 1,0
[z] (CP

1), then u = ui∂x and ū = ūi∂x, so that:

∂x∂x(− log(h1([z])))(u, ū) =
1

(1 + |x|2)2
|u|2 > 1

2
|u|2.
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We therefore get a globally defined symplectic form (called the Fubini-Study form) ω =
i∂∂φ = i(1 + |x|2)−2 dx ∧ dx̄. In this way (CP1, ω) is a Kähler manifold and O(1) is a
so-called prequantum line bundle.

The line bundle O(N), for N ∈ N, is defined by taking the N th tensor power of O(1).
The transition functions and Hermitian metric are simply raised to the N th power.

Smooth sections of O(N) have the following L2 inner-product:

⟨u, v⟩L2
N
:=

ˆ
CP1

h[z](u([z]), v(u([z])))ω([z]).

Locally, within U1, this inner-product can be written as

⟨u, v⟩L2
N
:=

ˆ
C
u1(x)v1(x)e

−N log(1+|x|2) dx ∧ dx̄

(1 + |x|2)2
.

Because U1 contains all of CP1, except a single point (which has measure zero), this definition
suffices globally. We define L2(CP1,O(N)) as the completion of the space of smooth sections
with respect to this L2 inner-product. We then define H0(CP1,O(N)) as the subspace of
holomorphic sections.

This example is further expanded in Appendix B.3.

2.2.1 Remarks

There are many equivalent ways of constructing Toeplitz operators on Kähler manifolds.
An alternative construction is to begin with a Kähler manifold (M,ω), and try to find a
holomorphic Hermitian line bundle which produces a sympletic form coinciding with ω. Not
every Kähler manifold admits such a line bundle. There are conditions, which will not
be discussed here, of when such a line bundle exists. By the Kodaira embedding theorem
[Kod54], quantizable Kähler manifolds are exactly Kähler manifolds which can be holomor-
phicly embedded into a projective space. In the language of complex geometry, the positive
line bundle L is called ample. In the language of geometric quantization, the positive line
bundle L is called a prequantum line bundle. For the sake of this thesis, we simply call
Kähler manifolds quantizable if such a line bundle can be constructed.

By [LeF18, Proposition 3.5.6], a quantizable Kähler manifold with prequantum line bun-
dle L will have a unique Hermitian metric, up to multiplication by a constant. The choice
of such a constant varies in the literature. When discussing Bergman kernel asymptotics,
the convention is to take (i/2)∂∂φ = ω for φ = − log(h). When discussing Toeplitz quanti-
zations, the convention is to take i∂∂φ = ω. The latter is more natural in the semiclassical
setting (and followed in this thesis). This is the reason why the Bergman kernel used in this
thesis (and all literature discussing Toeplitz quantizations) is 2−d times the Bergman kernel
in papers discussing the Bergman kernel asymptotics (for instance in [BBS08]).
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Chapter 3

An Exotic Calculus

3.1 Introduction

In this chapter, we assume X is a compact, connected, d-dimensional complex manifold with
a positively curved holomorphic Hermitian line bundle L. Locally the Hermitian metric
is given by hφ = e−φ. The Hermitian metric gives a globally defined symplectic form on
X by i∂∂φ := ω. We then get that (X,ω) is a Kähler manifold. For a smooth function
f ∈ C∞(X), we denote the Berezin–Toeplitz operator associated to f by TN,f (the f is put
in the subscript to more naturally write the Kernel of these operators).

In this chapter, we allow f and its derivatives to grow in N with bounds depending on
an order function m on X. This more exotic symbol class is defined in §3.2, and is denoted
Sδ(m) (for m an order function and δ ∈ [0, 1/2) a fixed parameter). The main result of
this chapter is to obtain asymptotic expansions of the Schwartz kernels of Toeplitz operators
whose symbol is in Sδ(m).

3.2 A new symbol class

For the remainder of this chapter, we fix a finite atlas of neighborhoods (Ui, ρi)i∈I for X.

Definition 3.2.1 (δ-order function on X). For δ ∈ [0, 1/2), a δ-order function on X is a
function m ∈ C∞(X;R>0), depending on N , such that there exist C,M0 > 0 so that for all
x, y ∈ X

m(x) ≤ Cm(y)
(
1 +N δ dist(x, y)

)M0
(3.2.1)

where dist(x, y) is the is the distance between x and y with respect to the Riemannian metric
on X induced by the symplectic form ω.

This chapter will also use δ-order functions on Rd and Cd, which are defined below.
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Definition 3.2.2 (δ-order function on Rd and Cd). For δ ∈ [0, 1/2), a δ-order function on
Rd (or Cd) is a function m ∈ C∞(Rd;R>0) (or C∞(Cd;R>0), depending on N , such that
there exist C,M0 > 0 so that for all x, y ∈ Rd (or Cd)

m(x) ≤ Cm(y)
(
1 +N δ|x− y|

)M0

Example 3.2.1. If f ∈ C∞(X;R≥0) and δ ∈ [0, 1/2), then m = N2δf + 1 is a δ-order
function on X.

Proof. First let x, y ∈ Ui for some i ∈ I and define mi = m ◦ ρ−1
i and fi = f ◦ ρ−1

i . Using
that mi ≥ 1, for α ∈ N2d with |α| = 1,

(∂αx,x̄mi)(x) = N2δ(∂αx,x̄fi)(x) ≲ N2δ
√
fi(x) ≤ N δ

√
mi(x).

Here we use the fact that if g ∈ C∞(Cd;R≥0) with bounded derivatives and |α| = 1 then
|∂αx,x̄g(x)| ≲

√
g(x) (see for instance [Zwo12, Lemma 4.31]).

If α ∈ N2d with |α| = 2, then because f is bounded, (∂αx,x̄mi)(x) ≲ N2δ. So by Taylor
expansion, there exists a C > 0 such that

mi(x) ≤ mi(y) + C(
√
mi(y)|x− y|N δ + |x− y|2N2δ) (3.2.2)

≲ (1 + |x− y|2N2δ)mi(y). (3.2.3)

To see this last inequality, let a =
√
mi(y) and b = |x − y|N δ, then using that a ≥ 1 and

b ≥ 0, the right-hand side of (3.2.2) is:

a2 + C(ab+ b2) ≲ (a2 + b2) ≲ (a2 + a2b2)

which is the right-hand side of (3.2.3). As X is compact, there exists a C > 0 such that

1

C
|ρ(x)− ρ(y)| ≤ dist(x, y) ≤ C|ρ(x)− ρ(y)|

for all x, y ∈ Ui. Therefore m satisfies (3.2.1) on the patch Ui with M0 = 2.
For the global statement, pick x, y ∈ X, and consider the minimum number of charts that

cover a geodesic from x to y having length dist(x, y). Next, label these charts U0, . . . , UM
where x ∈ U0 and y ∈ UM . For each Ui (i ̸= M), select some zi ∈ Ui ∩ Ui+1. Then by the
above, we have that

m(x) ≲ m(z0)
(
1 + dist(x, z0)N

δ
)2

≲ · · · ≲ m(y)
M−1∏
i=−1

(
1 + dist(zi, zi+1)N

δ
)2

(where z−1 := x and zM := y). Then by the selection of the charts, dist(zi, zi+1) ≤ dist(x, y),
so that:

m(x) ≲ m(y)
(
1 + dist(x, y)N δ

)2M
.

Therefore we have (3.2.1) for M0 = 2 |I | (where |I | is the number of charts).
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Definition 3.2.3 (Sδ(m)). Let m be a δ-order function on X (with δ ∈ [0, 1/2) fixed). Define
Sδ(m) as all smooth functions f on X, which are allowed to depend on N , such that for all
α ∈ N2d, there exists Cα > 0 such that

|∂αx,x̄(f ◦ ρ−1
i (x))| ≤ CαN

δ|α|m ◦ ρ−1
i (x)

for each i ∈ I and x ∈ ρi(Ui).

Similarly, by replacing X by Rd or Cd, we can define Sδ(m) for functions on Rd or Cd.

Definition 3.2.4 (Asymptotic expansion of symbols). For δ ∈ [0, 1/2), m a δ-order function
on a quantizable Kähler manifold X, functions fj ∈ Sδ(m) for j ∈ Z≥0 and f ∈ Sδ(m), we
will write f ∼

∑∞
0 N−(1−2δ)jfj if for all α ∈ N2d, M ∈ N, and i ∈ I

∂αx,x̄

(
f ◦ ρ−1

i (x)−
M−1∑
j=0

N−(1−2δ)j(fj ◦ ρ−1
i (x))

)
= Oα,M(N−M+|α|δm ◦ ρ−1

i (x)).

(3.2.4)

By Borel’s Theorem (see [Zwo12, Theorem 4.15] for instance), given any fj ∈ Sδ(m) we
can always construct such an asymptotic sum.

Proposition 3.2.5 (Borel’s Theorem for Sδ(m)). Fixing δ ∈ [0, 1/2), m a δ-order function
on a quantizable Kähler manifold X, and fj ∈ Sδ(m) for j ∈ Z≥0, then there exists f ∈ Sδ(m)
such that (3.2.4) holds and f is unique modulo O(N−∞) error.

Proof. On each coordinate patch, Ui, define

aj(x) := N−(1−2δ)jfj(ρ
−1
i (xN δ)) and m̃i(x) := m(ρ−1

i (xN δ)).

In this case aj ∈ Sδ(m̃i) for each j, and so by [Zwo12, Theorem 4.15], there exists a ∈ Sδ(m̃i)
such that a ∼

∑∞
0 N−jaj with uniqueness modulo O(N−∞) error. On Ui, we let f(x) =

a(ρ(x)N−δ). We can glue each patch together by uniqueness to get a globally defined f .

Example 3.2.2. Given a compact Kähler manifold X, smooth functions fj ∈ S0(1) for
j ∈ Z≥0, f0 ≥ 0, f ∼

∑∞
0 N−jfj, δ ∈ [0, 1/2) and m = f0N

2δ + 1, then fN2δ ∈ Sδ(m).

Proof. For each i, let gi = N2δf ◦ ρ−1
i and mi = m ◦ ρ−1

i . First, for x ∈ Ui

|gi(x)| ≲ N2δf0 ◦ ρ−1
i (x) ≲ mi(x).

If α ∈ N2d with |α| = 1, then:

|∂αx,x̄gi(x)| ≲ N2δ∂αx,x̄
(
f0 ◦ ρ−1

i

)
(x) ≲ N2δ

√
f0 ◦ ρ−1

i (x) ≲ N δmi(x),

using that 0 ≤ f0 < mN−2δ and m ≥ 1. Then, because each fi is bounded, for all α ∈ N2d

with |α| ≥ 2

|∂αx,x̄gi(x)| ≲ N2δ∂αx,x̄
(
f0 ◦ ρ−1

i

)
(x) ≲ N2δ ≤ m(x)N2δ ≤ m(x)N δ|α|.
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3.2.1 Almost analytic extension

When applying the method of complex stationary phase, almost analytic extensions of
smooth functions are constructed. We will briefly review results about almost analytic
extensions, as well as prove estimates for almost analytic extensions of functions in Sδ(Rd).
Similar results about almost analytic extensions of functions with growth in N are proven
in [MS75, Proposition 1.16].

We recall the notation ∂z = 1
2
(∂

Re(z) − i∂Im(z)) and ∂z = 1
2
(∂Re(z) + i∂Im(z)) to denote

holomorphic and anti-holomorphic differentiation. Recall f ∈ C∞(C) is holomorphic in an
open set U ⊂ C if and only if ∂zf(z) = 0 for all z ∈ U . To apply the method of complex
stationary phase, we would like to take a smooth compactly supported function f on Rd

and extend it to a holomorphic function f̃ on Cd and apply the Cauchy integral formula.
Requiring holomorphy of f̃ is impossible by Liouville’s theorem. However, if we relax the
condition of holomorphy to ∂f̃ vanishing up to infinite order as we approach the real axis,
we can apply a variant of the Cauchy integral formula.

For a smooth function f ∈ C∞(Cd), we write f = O(|Im (z)|∞) to mean that for any
M ∈ N and compact set K ⊂ C, there exists C = C(M,K) > 0 such that

|f(z)| ≤ C |Im (z)|M

for all z ∈ K.

Proposition 3.2.6 (Almost analytic extension of C∞
0 (Rd) functions). If f ∈ C∞

0 (Rd), then
there exists f̃ ∈ C∞

0 (Cd) such that for α, β ∈ Nd, |β| ≥ 1

1. f̃ |Rd = f ,

2. ∂zf̃(z) = O(|Im (z)|∞),

3. ∂αz ∂
β

z f̃(z) = Oα,β(|Im (z)|∞),

4. ∂αz f̃(z) = Oα(1).

Moreover, given any neighborhood containing the support of f in Cd, such a f̃ can be con-
structed to be supported in this neighborhood.

Remark 3.2.1. While included for clarity, we note that conditions (2) and (3) are equivalent
in Proposition 3.2.6 as proven in [Tre80, Chapter 10, Lemma 2.2].

A construction in one dimension of such an extension (which is easily generalized to
higher dimensions) is

f̃(x+ iy) =
ψ(x)

2π

ˆ
R
ei(x+iy)ξf̂(ξ)χ(ξy) dξ
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where ψ, χ ∈ C∞
0 (R), with χ ≡ 1 near 0 and ψ ≡ 1 on the support of f . See [Tre80, Chapter

10.2] for further discussion.
Almost analytic extensions are not unique. However, if f̃ and g̃ are two almost analytic

extensions of f on Rd, then by Taylor expansion, ∂αz,z̄(f̃(z)− g̃(z)) = Oα(|Im (z)|∞) for any
α ∈ N2d.

Furthermore, smooth functions can be extended off any totally real subspace, that is
a subspace V ⊂ Cd such that iV ∩ V = {0}. In this way if f ∈ C∞

0 (V ), then there
exists f̃ ∈ C∞(Cd) such that ∂zf̃(z) = O(|dist(z, V )|∞). While any holomorphic function
is determined by its restriction to a maximally totally real subspace, the same is true for
almost analytic extensions modulo O(|dist(z, V )|∞) error.

Proposition 3.2.7 (Almost analytic extensions of Sδ(m) functions on Rd). For a fixed
δ ∈ [0, 1/2), and given a δ-order function m on Rd, and f ∈ Sδ(m), then there exists C > 0
and an almost analytic extension f̃ ∈ C∞

0 (Cd) such that for α, β ∈ Nd, |β| ≥ 1,

1. f̃ |Rd = f ,

2. ∂zf̃(z) = m(Re (z))N δO(
∣∣Im (z)N δ

∣∣∞),

3. ∂αz ∂
β

z f̃(z) = Oα,β(|Im (z)N δ|∞)N δ(1+|α|+|β|)m(Re (z)),

4. ∂αz f̃(z) = Oα(N
δ|α|)m(Re (z)),

5. supp f̃ ⊂
{
|Im (z)| < CN−δ}.

Proof. Let ψ ∈ C∞
0 (Rd) be such that ψn(x) := ψ(x − n) for n ∈ Zd is a smooth partition

of unity. Next let g(x) = f(N−δx) and m̃(x) = m(N−δx), so that for each α ∈ N2d,
|∂αx,x̄g(x)| ≲α N

−δ|α|N δ|α|m(N−δx) ≲α m̃(x).
For each n ∈ Zd, let m̃n = m̃(n) and gn(x) = g(x)ψn(x). By shrinking the support of

ψ, we may assume supp gn ⊂ {|x− n| < 1}. Note that m̃(x)/m̃(y) ≤ C(1 + |x − y|)M0 so
that C−12−M0m̃n ≤ m̃(x) ≤ Cm̃n2

M0 for all x ∈ supp gn. Therefore for all α ∈ Nd, there
exists Cα > 0 such that |∂αgn(x)| ≤ Cαm̃n. Then, by Proposition 3.2.6, an almost analytic
extension of gn, g̃n, can be constructed to satisfy the following.

• g̃n|Rd = gn.

• ∂zg̃n(z) = m̃nO(|Im (z)|∞) (with constants independent of n).

• For each α, β ∈ Nd, |β| ≥ 1: ∂αz ∂
β

z g̃n(z) = m̃nOα,β(|Im (z)|∞).

• For all α ∈ Nd: |∂αz g̃n(z)| = m̃nOα(1).

• supp g̃n is contained within a complex neighborhood of the real ball of radius 1 centered
around n.
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Since
∑
gn = g, it follows that

∑
gn(xN

δ) = f(x). Therefore the natural choice of an
extension of f is f̃(z) :=

∑
g̃n(zN

δ).
From this, (1) follows immediately. To see (2), let g̃(z) := f̃(N−δz), then for all M ∈ N:

|∂g̃(z)| ≤
∑

n:z∈supp g̃n

|∂zg̃n(z)| ≲M |Im (z)|M
∑

n:z∈supp g̃n

m̃n ≲M |Im (z)|M m̃(Re (z)).

Changing variables, z → zN δ, we get:

|∂f(z)| ≲M |Im (z)|M N δM−1m(Re (z)).

By the same change of variables, (3), (4), and (5) follow similarly.

3.2.2 Bergman kernels

On the holomorphic Hermitian line bundle L over X, let τj be trivializations on the open
sets Uj with transition functions gjk defined by: τj(x, 1) = gk,j(x)τk(x, 1) for x ∈ Uj ∩ Uk.
Sections on L can be locally written s(x) = sj(x)ej(x) where ej(x) := τj(x, 1) and sj are
complex valued functions. A global section s, given by sj’s, must obey the transition rule
sk(x) = gkj(x)sj(x) for x ∈ Uj ∩ Uk. Recall that lengths of elements of L coincide with the
Kähler potential φ, that is ∥ej(x)∥ = e−φj(x).

Using the volume form µ := ω∧d/d!, the L2 inner-product on sections of L is explicitly
written

⟨u, v⟩ =
∑
j

ˆ
Uj

χj(x)uj(x)v̄j(x)e
−φj(x) dµ(x),

where χj is a partition of unity subordinate to Uj, and u, v are smooth sections such that
u =

∑
ujej and v =

∑
vjej. In this way, smooth sections can locally be described by smooth

functions. Throughout this thesis, as most of the analysis is local, sections are treated as
smooth functions and ej are not written.

Sections of the N th tensor power of L, denoted by LN , are locally written s(x) =
sj(x)ej(x)

⊗N where sj obey the transition rule sk(x) = gNkj(x)sj(x). A Hermitian metric

on LN can be constructed by raising the original metric to the N th power. In this way, there
is a natural inner product on sections of LN coming from the original metric. Given sections
u and v on LN , define

⟨u, v⟩ =
∑
j

ˆ
Uj

χj(x)uj(x)v̄j(x)e
−Nφj(x) dµ(x).

In the following section, we will write operators on sections as integral kernels. The Bergman
projector ΠN is a bounded map from L2(X,LN) → L2(X,LN), and by the Schwartz kernel
Theorem (see [LeF18, Proposition 6.3.1]), has Schwartz kernel ΠN ∈ L2(X × X̄, LN ⊠ LN).
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Here X̄ is the manifold X with symplectic form −ω and complex structure opposite to the
complex structure on X. ΠN is a smooth section of LN⊠LN which is holomorphic in the first
argument and anti-holomorphic in the second argument, so we write ΠN ∈ H0(X×X,LN ⊠
LN). Similarly, Schwartz kernels of Toeplitz operators also live in H0(X × X,LN ⊠ LN).
Just as smooth sections can locally be described by smooth functions, smooth sections of
LN ⊠ LN can be described by smooth functions of two variables. A holomorphic section of
LN ⊠ LN can be locally defined by a function of two variables which is holomorphic in the
first component, and anti-holomorphic in the second component. For this reason, we will
locally write ΠN as ΠN(x, ȳ), so that the function ΠN(x, y) is holomorphic in both variables.
In the remainder of this thesis, this convention will be used for both holomorphic functions,
and almost-holomorphic functions.

For a smooth function f on X, the associated Toeplitz operator has kernel

TN,f (x, ȳ) =

ˆ
X

ΠN(x, w̄)f(w)ΠN(w, ȳ)e
−Nφ(w) dµ(w).

This chapter does not include the L2 weight in the kernel, that is if u is a smooth section on
LN , then

TN,f [u](x) :=

ˆ
X

TN,f (x, ȳ)u(y)e
−Nφ(y) dµ(y).

In [BBS08], Berman, Berndtsson, and Sjöstrand provided a direct proof to approximate the
Bergman kernel near the diagonal (for each N0 ∈ N) by:

ΠN0
N (x, ȳ) =

(
N

2π

)d
eNψ(x,ȳ)

(
1 +

N0∑
1

bi(x, ȳ)

)
(3.2.5)

where bm ∈ C∞(X × X;C) are locally almost analytic off {(x, x̄)}, and ψ is an almost
analytic extension of φ such that ψ(x, x̄) = φ(x). By [BBS08],

ΠN(x, ȳ) = ΠN0
N (x, ȳ) + O(Nd−N0−1)e

N
2
(φ(x)+φ(y)). (3.2.6)

Conversely, away from the diagonal we have the following Lemma proven in [MM14].

Lemma 3.2.8 (Off diagonal decay of Bergman kernel). For x, y ∈ X, there exists C, c > 0
such that:

∥ΠN(x, ȳ)∥hN ≤ CNde−c
√
N dist(x,y)

where dist(·, ·) is the Riemannian distance on X and locally ∥ΠN(x, ȳ)∥hN is

e−
N
2
(φ(x)+φ(y))|ΠN(x, ȳ)|. (3.2.7)
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It should be noted that in [Chr13], Christ proved a stronger decay estimate of ΠN away
from the diagonal, but we want to avoid fine analysis at this early stage.

By Taylor expanding ψ(x, ȳ) near the diagonal, it follows that there exists C > 0 such
that

Re (ψ(x, ȳ)) ≤ −C|x− y|2 + 1

2
(φ(x) + φ(y)) (3.2.8)

(see for instance [HS22, Proposition 2.1]). This, along with Lemma 3.2.8, provides the
following global bound.

Lemma 3.2.9 (Global Bergman kernel bound). There exists ε, C, c > 0 such that:

∥ΠN(x, ȳ)∥hN ≤

{
CNde−CN |x−y|2 + O(N−∞) if dist(x, y) < ε,

CNde−c
√
Nε if dist(x, y) > ε.

Where, locally ∥ΠN(x, y)∥hN is given by (3.2.7) and |x− y| is the distance in coordinates of
x and y (ε > 0 is chosen sufficiently small such that x and y are in the same chart).

3.3 Composition of Toeplitz operators with symbols

in Sδ(m)

This section estimates the composition of two symbols in Sδ(m1) and Sδ(m2) where m1 and
m2 are two δ-order functions on X with δ ∈ [0, 1/2) fixed. That is, if f ∈ Sδ(m1) and g ∈
Sδ(m2), then this section constructs h ∈ Sδ(m1m2), such that TN,f ◦TN,g = TN,h+O(N−∞).
Here the big-O is in terms of the norm L2(X,LN) → L2(X,LN).

This proof will be broken into several steps which rely on the method of complex sta-
tionary phase. Before this, we explicitly write out the Schwartz kernel of Toeplitz operators.

3.3.1 An Asymptotic Expansion of the Kernel of a Toeplitz
Operator

In this subsection, we apply Melin and Sjöstrand’s method of complex stationary phase to
obtain an asymptotic expansion of the kernel of Toeplitz operators for functions in Sδ(m).

Theorem 3.3.1 (Asymptotic expansion of symbols in Sδ(m)). Suppose ε > 0 is small
enough such that if dist(x, y) < ε, then x and y are contained in the same chart. Let
∆ε = {(x, y) ∈M ×M : dist(x, y) < ε}. Fixing δ ∈ [0, 1/2), suppose m is a δ-order function
on X with constant M0 in (3.2.1). Then if f ∈ Sδ(m), there exist fj ∈ C∞(∆ε;C) (j ∈ Z≥0)
such that for all J ∈ N, in local coordinates TN,f (x, ȳ) is(

N

2π

)d
eNψ(x,ȳ)

(
J−1∑
j=0

N−jfj(x, ȳ) +N−JRJ(x, ȳ)

)
+ e

N
2
(φ(x)+φ(y))O(N−∞) (3.3.1)



CHAPTER 3. AN EXOTIC CALCULUS 29

where:

RJ(x, ȳ) ∈ N2δJ(Sδ(m(x)) ∩ Sδ(m(y)),

fj(x, ȳ) ∈ N2δj (Sδ(m(x)) ∩ Sδ(m(y))) ,

supp fj(x, ȳ) ⊂
{
dist(x, y) < CN−δ} ,

f0(x, x̄) = f(x),

for some C > 0. Moreover, in local coordinates, fj(x, y) are almost analytic off the totally
real submanifold

{
(x, y) ∈ Cd × Cd : y = x̄

}
, and if f ′

j is another almost analytic extension

agreeing with fj on the diagonal, then the difference of the two kernels is exp(N
2
(φ(x) +

φ(y))O(N−∞).

Remark 3.3.1. An alternate asymptotic expansion can be written by bounding RJ in (3.3.1)
and absorbing the exp((N/2)(φ(x)+φ(y))O(N−∞) term. That is (with the same quantifiers
as in Theorem 3.3.1) TN,f (x, ȳ) can be written(

N

2π

)d
eNψ(x,ȳ)

J−1∑
j=0

N−jfj(x, ȳ)

+ e
N
2
(φ(x)+φ(y))O(Nd−J(1−2δ) min(m(x),m(y))).

(3.3.2)

The proof follows the method of complex stationary phase, developed by Melin and
Sjöstrand in [MS75], and presented in [Tre80] by Treves. The difficulty is that the amplitude
is no longer bounded in N , but lives in Sδ(m) and so any almost analytic extension is
slightly weaker than in [Tre80]. Careful analysis is required to ensure the stationary phase
still provides appropriate remainders.

To avoid reproving the method of complex stationary phase, we use the same notation
for variables in [Tre80]. Unfortunately, there is no ideal uniform choice of variables. We
will have the same variable used for different objects in separate parts of the proof. We
begin with (x, y) to denote the argument of the Schwartz kernel. For each (x, y), we get an
integral over w ∈ Cd. We rewrite w in real coordinates, p, and replace (x, y) by t, to use
the same notation as in [Tre80, Chapter 10]. After going through complex stationary phase,
we replace t by (x, y). This notational choice is summarized in the following table for the
reader’s convenience.

variable name space first reference step(s) used comment
x, y Cd (3.3.3) 1,5-9 argument of kernel
w Cd (3.3.3) 1,5 integrated variable
p R2d (3.3.6) 1 realifies w
p C2d step 2 2-4 complexifies previous p
t R4d (3.3.7) 1-5 realifies (x, ȳ)

p̃(t) = p̃(x, ȳ) C2d step 2 2,4-8 critical point of Ψ̃
p(x, ȳ, z) = p(z0) C2d step 2 2,3,5,7 point on new contour
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Proof. Step 1: Rewrite TN,f(x, y) locally in real coordinates
The goal is to write TN,f (x, y) for x near x0 ∈ X and y ∈ X. We may assume x0 ∈ U1

with ρ(x0) = 0 (recall (Ui, ρi) are charts on X). By construction,

TN,f (x, ȳ) =

ˆ
U1

ΠN(x, w̄)f(w)ΠN(w, ȳ)e
−Nφ(w) dµ(w)

+

ˆ
X\U1

ΠN(x, w̄)f(w)ΠN(w, ȳ)e
−Nφ(w) dµ(w).

(3.3.3)

By Lemma 3.2.9, the second integral is exp(N
2
(φ(x) + φ(y)))O(N−∞). If y /∈ U1, then by

Lemma 3.2.9, (3.3.3) will be exp(N
2
(φ(x) + φ(y)))O(N−∞).

We now assume that x, y ∈ U1 which allows us to work locally. For the remainder of
the proof (until the last step) all computations are for x and y in this chart. We therefore
replace ρ(x) and ρ(y) by x and y respectively and functions on X are replaced by functions
on C with the same name.

We now rewrite (3.3.3) as
ˆ
ρ1◦U1

eNΦx,ȳ(w)gx,ȳ(w) dm(w) + e
N
2
(φ(x)+φ(y))O(N−∞) (3.3.4)

where

Φx,ȳ(w) = ψ(x, w̄)− φ(w) + ψ(w, ȳ),

gx,ȳ(w) =

(
N

2π

)2d

f(w)B(x, w̄)B(w, ȳ)µ(w), (3.3.5)

ω∧d(w)

d!
= µ(w) dm(w).

Here dm(w) is the Lebesgue measure on Cd. Note that locally if

ω = i

d∑
ℓ,m=1

Hℓ,m dwℓ ∧ dw̄m

then

ω∧d/d! = 2d det(H) dRe (w1) ∧ dIm (w1) ∧ · · · ∧ dRe (wd) ∧ dIm (wd) .

Recall that H = ∂∂φ which is locally a positive definite matrix. Therefore, locally, µ(w) =
2d det(∂∂φ(w)).

For any M ′ ∈ N, the projector ΠN can be estimated with M ′ terms as in (3.2.6).

Indeed, if we let B(x, ȳ) := 1 +
∑M ′

1 bi(x, ȳ), as in (3.2.5), then this introduces error
O(N2d−2M ′−2) exp(N

2
(φ(x) + φ(y))) which is absorbed into the error term in (3.3.4) as M ′

can be arbitrarily large.
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We next change to real coordinates by setting

p := (Re (w) , Im (w)) ∈ R2d, (3.3.6)

t := (Re (x) , Im (x) ,Re (y) ,−Im (y)) ∈ R4d (3.3.7)

and define

Ψ(p, t) := Φx,ȳ(w(p))−
1

2
(φ(x(t)) + φ(y(t))) : R2d × R4d → C, (3.3.8)

g(p, t) := gx,ȳ(w(p))χ(w(p)) : R2d × R4d → C (3.3.9)

where χ ∈ C∞
0 (Cd; [0, 1]) is identically 1 near 0. With this, the first term of (3.3.4) can be

written

e
N
2
(φ(x)+φ(y))

ˆ
R2d

eNΨ(p,t)g(p, t) dp

+

ˆ
ρ1◦U1

eNΦx,ȳ(w)gx,ȳ(w)(1− χ(w)) dm(w).
(3.3.10)

By the Taylor expansion of Re (Φx,ȳ(w)) stated in (3.2.8), it immediately follows that the
second term in (3.3.10) is exp(N

2
(φ(x) + φ(y)))O(N−∞).

Summary of step 1. We have observed that the Schwartz kernel of TN,f , written TN,f (x, ȳ),
is concentrated along the diagonal y = x. Near any x, we can approximate TN,f (x, ȳ) as
an integral over R2d of the form

´
exp(Nψ(p, t))g(p, t) dp. Here t is a function of x and

y, g is a smooth compactly supported function depending on the symbol f , the Bergman
kernel, and the density of the volume form on the Kähler manifold X, and Ψ is a sum of
phases appearing in the Bergman kernel. We would now like to apply the method of complex
stationary phase to approximate this integral.
Step 2: Deform the contour of the main term

Following the method of complex stationary phase presented by Treves in [Tre80, Chapter
10], the first term of (3.3.10) will be estimated by a contour deformation. Let Ψ̃ and g̃ be
almost analytic extensions of Ψ and g in the p variable (as described in Propositions 3.2.6
and 3.2.7).

We first observe that there is a unique solution p̃(t) to ∂pΨ̃(p, t) = 0 (where p ∈ C2d)
such that the Hessian Ψ̃pp(p̃(t), t) is invertible with real part negative definite. Indeed, by
[HS22, Proposition 2.2], Ψ(p, 0) has a unique critical point at p = (0, 0) with critical value
equal to zero such that the real part of the Hessian is a negative definite matrix. By the
implicit function theorem (see [Tre80, Chapter 10, Lemma 2.3] for details), there exists a
unique smooth function p̃(t) solving ∂pΨ̃(p̃(t), t) = 0 (here ∂p is the holomorphic derivative
in the p variable). In Lemma 3.3.7, an estimate of p̃(t) is proven.

The desired contour deformation relies on a particular function q, which is proven to exist
in [Tre80, Chapter 10, Lemma 3.2] and is stated here without proof.

Lemma 3.3.2. There exist U ⊂ C2d, V ⊂ R4d open neighborhoods of 0 and smooth function
q : U × V → C2d such that
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1. q(p̃(t), t) = 0,

2. for each t ∈ V , p 7→ q(p, t) is a diffeomorphism from U onto an open neighborhood of
zero in C2d,

3. Ψ̃(p, t)− Ψ̃(p̃(t), t) + 1
2
q(p, t) · q(p, t) = O((|Im (p)|+ |Im (p̃(t))|)∞).

Let q(p, t) = (z1, . . . , z2d) = (x1 + iy1, . . . , x2d + iy2d). For each t, let

U (t) := q(supp g ∩ R2d, t) ⊂ C2d.

For t close to 0, there exists a function ζ such that U (t) =
{
x+ iy : y = ζ(x, t), x ∈ U R(t)

}
,

where U R(t) is the projection of U (t) onto R2d.
For each s ∈ [0, 1], let Us(t) =

{
x+ isζ(x, t) : x ∈ U R(t)

}
. Define the contour:

Us(t) =
{
p ∈ C2d : q(p, t) ∈ Us(t)

}
= q(·, t)−1(Us(t)).

To ease notation below, let zs = zs(x) := x + isζ(x, t), and p(zs) = q(·, t)−1(zs), so that
Us =

{
p(zs(x)) : x ∈ U R

}
. For a simple example of this contour construction, see Appendix

A.2.3. For a schematic drawing of this contour construction, see Figure 3.1.
Observe that U1(t) =

{
x+ ζ(x, t) : x ∈ U R(t)

}
= U (t) = q(supp g ∩ R2d, t). So

U1(t) =
{
p ∈ C2d : q(p, t) ∈ q(supp g ∩ R2d, t)

}
= supp g ∩ R2d.

Because this contains the support of g, we may rewrite the first integral in (3.3.10) as
ˆ
R2d

eNΨ(p,t)g(p, t) dp =

ˆ
U1(t)

eNΨ̃(p,t)g̃(p, t) dp,

which, by Stokes’ theorem, is
ˆ
U0(t)

eNΨ̃(p,t)g̃(p, t) dp1∧ · · · ∧ dp2d

+

ˆ
W

(∂p(e
NΨ̃(p,t)g̃(p, t))) ∧ dp1 ∧ · · · ∧ dp2d

(3.3.11)

where W =
{
p ∈ C2d : q(p, t) ∈ Us(t), s ∈ [0, 1]

}
.

Summary of step 2. We considered
´
exp(NΨ)g dp as an integral over R2d within C2d by

almost analytically extending Ψ and g. We then chose a particular contour deformation and
applied Stokes’ theorem to rewrite this as two integrals (as in (3.3.11)). We will show that
by this choice of contour deformation and almost analytic extensions, the second term in
(3.3.11) is negligible.
Step 3: Estimate ∂p(exp(NΨ̃)g̃)

To control the second term of (3.3.11), ∂-estimates for Ψ̃ and g̃ are required. Note
that p 7→ Ψ(p, t) ∈ C∞(R2d) (with uniform derivative estimates independent of N as in
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Figure 3.1: Schematic of the contour deformation.

Proposition 3.2.7). Therefore Ψ̃ has the usual ∂p estimates (vanishing to infinite order in the
imaginary direction). On the other hand, g has growth in N when differentiated.

Here we define mR : R2d → R>0 by

mR(p1, p2) = m ◦ ρ−1
1 (p1 + ip2). (3.3.12)

Then, by examining (3.3.5) and (3.3.9), we see that g(·, t) ∈ Sδ(mR) (prior to almost analytic
extension). Therefore, by Proposition 3.2.7, for all M ∈ N and p ∈ C2d, we have that

|∂pg̃(p, t)| ≲M N δ−Mδ |Im (p)|M mR(Re (p)).

Therefore:

|∂p(eNΨ̃(p,t)g̃(p, t))| = |(∂pg̃(p, t) +N∂pΨ̃(p, t))eNΨ̃(p,t)|

≲M eNRe(Ψ̃(p,t))
(
N δ−MδmR(Re (p)) |Im (p)|M +N |Im (p)|M

)
≲M eNRe(Ψ̃(p,t)) |Im (p)|M (N δ(M+1)mR(Re (p)) +N).

As we are integrating over W , we may write p = p(zs(x)) for x ∈ U R and s ∈ [0, 1]. Now a

bound of exp(NRe
(
Ψ̃(p(zs(x)), t)

)
) is required. For this we apply the following Lemma.
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Lemma 3.3.3. If U and V are small enough, there exists a C > 0 such that for all (x, t) ∈
U × V :

Re
(
Ψ̃(p(zs(x)), t)

)
≤ −C|Im (p(zs(x)))|2.

Proof. This is an upgraded version of [Tre80, Chapter 10, Lemma 3.2], which states that for
all s ∈ [0, 1], there exists C ′ > 0 such that

Re
(
Ψ̃(p(zs(x)), t)

)
≤ −C ′(1− s)−1|Im (p(zs(x)))|2 − C ′ |Im (p̃(t))|2 . (3.3.13)

Observe that for s = 0, p(zs(x)) ∈ R2d. Then because Re
(
Ψ̃
)
has a unique critical point

with negative definite Hessian, we see that for s and x near zero, there exists a C ′′ > 0 such

that Re
(
Ψ̃(p(zs(x))), t

)
≤ −C ′′|p(zs(x)|2 ≤ −C ′′ |Im (p(zs(x)))|2. We can combine this with

[Tre80, Chapter 10, Lemma 3.2] to get Lemma 3.3.3.

Using this lemma, we see that

|∂p(eNΨ̃(p,t)g(p, t))| ≲M e−CN |Im(p)|2 |Im (p)|M (N δ(M+1)mR(Re (p)) +N)

≲M,M ′ N−M ′ |Im (p)|M−2M ′
max(N δ(M+1+M0), N)

for any M ′ ∈ N. Here we used that mR(x) ≲ N δM0 and p is bounded on the region we are
integrating. Let M = 2M ′ so that

|∂p(eNΨ̃(p,t)g(p, t))| ≲M max(N δ(M0+1)−M(1/2−δ), N1−M/2) = O(N−∞)

because δ < 1/2, and M can be made arbitrarily large.

Summary of step 3. In this step, we proved that the second term of (3.3.11) is O(N−∞).
This involved estimating ∂p applied to the integrand. This was controlled by Propositions
3.2.6 and 3.2.7. Because g̃ is a function of our symbol (so its derivatives are unbounded in
N), these ∂p-estimates are weaker than the ∂p-estimates on Ψ̃. Fortunately, by the choice of
contour deformation, on the domain of integration the phase behaves like a Gaussian, and
destroys all temperate growth in the ∂p-estimates.
Step 4: Reduction to quadratic phase

We now compute the first term in (3.3.11). Define

J(N) :=

ˆ
U0

eNΨ̃(p,t)g̃(p, t) dp1 ∧ · · · ∧ dp2d. (3.3.14)

First change variables to integrate over x ∈ R2d:

J(N) =

ˆ
U R

eNΨ̃(p(x),t)g̃(p(x), t)

(
∂p

∂x

)
dx.
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Next, Taylor expand the phase about the critical point and interpolate the remainder. Define

iR(x, t) := Ψ̃(p(x), t)− Ψ̃(p̃(t), t) + |x|2/2,
Ψs(x, t) := Ψ̃(p̃(t), t)− |x|2/2 + isR(x, t),

h(x) := g̃(p(x), t)(∂p/∂x). (3.3.15)

Note that Ψ1(x, t) = Ψ̃(p(x), t) and Ψ0(x, t) = Ψ̃(p̃(t), t) − |x|2/2. We would like to prove
that J(N) can be estimated using the Ψ0 phase with O(N−∞) error.

Using that
ˆ 1

0

NR(x, t)eNΨs(x,t)ds = eNΨ1(x,t) − eNΨ0(x,t),

we get that∣∣∣∣ˆ
U R

(
eNΨ1(x,t) − eNΨ0(p(x),t)

)
h(x) dx

∣∣∣∣ = ∣∣∣∣ˆ 1

0

ˆ
U R

h(x)NR(x, t)eNΨs(x,t) dx ds

∣∣∣∣
≤ N

ˆ 1

0

ˆ
U R

|h(x)R(x, t)|eNRe(Ψs(x,t)) dx ds. (3.3.16)

We can control R(x, t) by the following Lemma presented in [Tre80, Chapter 10, Lemma
3.2].

Lemma 3.3.4. For all x ∈ U R(t), t near 0, M > 0, there exist CM > 0 such that |R(x, t)| ≤
CM(|Im (p(x))|+ |Im (p̃(t))|)M .

Using this, and Re
(
Ψ̃(p(x), t)

)
≤ −C(|Im (p̃(t))|2 + |Im (p(x))|2) (by (3.3.13)), we see

that for all M ∈ N, there exists CM > 0, such that

|R(x, t)| ≤ −CM
(
Re
(
Ψ̃(p(x), t)

))M
.

By expanding Ψs(x, t),

Re (Ψs(x, t)) = (1− s)Re
(
Ψ̃(p̃(t), t)

)
+ (1− s)

(
−|x|2

2

)
+ sRe

(
Ψ̃(p(x), t)

)
≤ sRe

(
Ψ̃(p(x), t)

)
.

Then, since |h(x)| ≤ CN δM0 (for some C > 0), (3.3.16) is bounded by

CN δM0+1

(ˆ
U R

(ˆ 1/2

0

(
− Re

(
Ψ̃(p(x), t)

))
e

−N
4

|x|2 ds

+

ˆ 1

1
2

esNRe(Ψ̃(p(x),t))
∣∣∣Re(Ψ̃(p(x), t)

)∣∣∣M ds

)
dx

)
.
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Because U R is bounded, and Ψ is bounded, both terms are O(N−∞).
Therefore:

J(N) = eNΨ̃(p̃(t),t)

ˆ
U R

e−N |x|2/2g(p(x), t)

(
∂p

∂x

)
dx+ O(N−∞) (3.3.17)

Summary of step 4. This step proceeded identically to [Tre80, Chapter 10]. We began
with our integral on the constructed contour U0 in C2d (3.3.14). We changed variables to
integrate over the real variable x ∈ R2d. We proved that this integral can be approximated
by replacing the phase with the critical value of the phase minus a quadratic term. This is
to set us up to apply the saddle-point method (also called real stationary phase).
Step 5: Apply the saddle-point method

By the saddle-point method (see for instance [GS94, Exercise 2.4]) for each J ∈ N we
can now rewrite (3.3.17) as

eNΨ̃(p̃(t),t)

ˆ
R2d

e−N |x|2/2h(x) dx+ O(N−∞)

= eNΨ̃(p̃(t),t)

(
2π

N

)d(J−1∑
j=0

1

N jj!2j
∆jh(0) +N−JRJ(t)

)
(3.3.18)

with error bound

|RJ(t)| ≲J

∑
|α|=2(J+1)

sup
x∈R2d

|∂αh(x)|,

where h is defined in (3.3.15).
We now have to unravel all the definitions of the functions in (3.3.18). First, replace t by

(x, ȳ). From the first four steps, we have shown that for x, y near zero, in local coordinates,
exp(−(N/2)(φ(x) + φ(y))TN,f (x, ȳ) is

eNΨ̃(p̃(x,ȳ),x,ȳ)

(
N

2π

)d(J−1∑
j=0

N−jfj(x, ȳ) +N−JRJ(x, ȳ)

)
+ O(N−∞), (3.3.19)

for each J ∈ N, where:

fj(x, ȳ) = (j!2j)−1∆j
zh(x, ȳ, 0) (3.3.20)

with

h(x, ȳ, z) = f̃(p(x, ȳ, z))g̃2(x, ȳ, p(x, ȳ, z)) det

(
∂p(x, ȳ, z)

∂z

)
. (3.3.21)
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Here we are defining p(x, ȳ, ·) := q−1(·, x, ȳ) (with q the change of variables defined in
Lemma 3.3.2). As usual, the derivatives of the terms in the stationary phase expansion are
evaluated at the critical point of the (almost analytically extended) phase. Indeed,

p(x, ȳ, 0) = q−1(·, x, ȳ)(0) = p̃(x, ȳ)

by the first property of q in Lemma 3.3.2.
Recall that x, y ∈ Cd, z ∈ R2d, p ∈ C2d, and g̃2 is an almost analytic extension of g

defined in the following way. We let

g2(w, x, ȳ) := B(x, w̄)B(w, ȳ) det(∂∂φ(w))χ(w) : Cd
w × Cd

x × Cd
y → C

where B(·, ·) comes from the Bergman kernel expansion, φ is the Kähler potential and χ is
a smooth cut-off function. Then we let p = (Re (w) , Im (w)) ∈ R2d, and define

(g2)R(p, x, ȳ) := g2(w(p), x, ȳ) : R2d
p × Cd

x × Cd
y → C

and finally let g̃2 be the almost analytic extension of (g2)R in the p variable.
By the support property of almost analytic extensions, we can choose an ε > 0 such that

g̃2(x, ȳ, p(x, ȳ, z)) = 0 if |p(x, ȳ, z)| > ε.
Also observe that when taking derivatives of h with respect to z, everything is uniformly

bounded in N , except when derivatives fall on f̃(p). Therefore by Proposition 3.2.7, for any
α ∈ N4d and j ∈ Z≥0:

|(∂αx,x̄,y,ȳfj)(x, ȳ)| ≲α,j N
2δj+|α|mR(Re (p̃(x, ȳ))), (3.3.22)

with mR defined in (3.3.12).

Summary of step 5. In this step we applied the saddle-point method to obtain an asymp-
totic expansion of the Schwartz kernel of TNf . To show that this asymptotic expansion
makes sense (fj’s belong to appropriate symbol classes and the remainder is controlled) we
have to compute derivatives of the terms in the expansion. These terms are almost analytic
extensions of functions whose derivatives are unbounded in N . However, we can see that
they are bounded by powers of N times the order function evaluated at the critical point
of the phase, p̃(x, ȳ). We must now estimate p̃(x, ȳ) (this will also be used in estimating
exp(NΨ̃(p̃(x, ȳ), x, ȳ)).
Step 6: Estimate critical value of phase

Recall that for each x, y ∈ Cd near 0, p̃(x, ȳ) is the unique p ∈ C2d such that

∂pΨ̃(p, x, ȳ) = 0

where ∂p is the holomorphic derivative in the p variable, and Ψ̃(p, x, ȳ) is an almost analytic
extension of Ψ(p, x, ȳ) (defined in (3.3.8)) in the p variable.

The goal is to show that p̃(x, y) is

1

2
((x+ y),−i(x− y)) + O(|x− ȳ|∞). (3.3.23)
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This would follow immediately, with no error, if we considered real-analytic Kähler potentials
φ. We will show that p̃(x, y) is almost analytic off of y = x̄, and coincides with 1

2
((x +

y),−i(x − y)) on y = x̄. By uniqueness of almost analytic extensions (modulo appropriate
error), this will imply that p̃(x, y) is (3.3.23).

Lemma 3.3.5. If |x− y| is sufficiently small, there exists a constant C > 0 such that:

|p̃1(x, ȳ) + ip̃2(x, ȳ)− x| ≤ C|x− y|,

where p̃ = (p̃1, p̃2) ∈ Cd × Cd.

Proof. By Taylor expansion, it suffices to show that p̃(x, x̄) = (Re (x) , Im (x)). Before
extension, ∂pΨ(p1, p2, x, x̄) = 0 has the unique solution p1 = Re (x) , p2 = Im (x). Observe
that for any k ∈ C∞

0 (R;C) with an almost analytic extension k̃, and any z0 ∈ C with
Im (z0) = 0,

(∂zk̃)(z0) = (∂Re(z)k̃)(z0) = (∂k)(Re (z0))

by Theorem 3.2.6.
Applying this observation to Ψ̃ and letting p̃1 be the extension of p1 from Rd to Cd, we

see that

1

2
∂p̃1Ψ̃(Re (x) , Im (x) , x, x̄) = ∂Re(p̃1)Ψ̃(Re (x) , Im (x) , x, x̄)

= ∂p1Ψ̃(Re (x) , Im (x) , x, x̄) = 0

and similarly for ∂p̃2 . Because p̃ is unique, the claim is proven.

Lemma 3.3.6. If |x− y| is sufficiently small, then

∂xp̃(x, y) = O(|x− y|∞) and ∂yp̃(x, y) = O(|x− y|∞).

Before proving Lemma 3.3.6, we give some brief remarks. Proving this lemma is relatively
confusing partially due to non-optimal notation (however we try to present a proof as clearly
as possible). The difficulty is that we require ∂ estimate of an almost analytic extension of
a function that has been almost analytically extended.

The core of the proof is to show that various ∂ estimates of Ψ̃ rapidly decay as |x − ȳ|
goes to zero. Recall the construction of Ψ̃. We began with φ (the Kähler potential), then we
almost analytically extended it to ψ such that ψ(x, x̄) = φ(x), then we defined Ψ(p, x, ȳ) =
ψ(x, p̄)− φ(p) + ψ(p, ȳ)− 1

2
(φ(x) + φ(y)), then we almost analytically extended this in the

p variable. See Figure 3.2 for a schematic diagram of these extensions.
One example to keep in mind is the Kähler manifold C with symplectic form ω = i dx∧dx̄

with Kähler potential φ(x) = |x|2. In this case ψ(x, ȳ) = xȳ (which is unique), so that
Ψ(p, x, ȳ) = xp̄ − |p|2 + pȳ − 1

2
(|x|2 + |y|2). The (unique) almost analytic extension of this

in the p variable is Ψ̃(p, x, ȳ) = x(p1 − ip2) − p21 − p22 + (p1 + ip2)ȳ − 1
2
(|x|2 + |y|2) (where

p = (p1, p2) ∈ Cd × Cd).
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Ψ̃(p, x, ȳ)

Ψ(p, x, ȳ)

ψ(x, ȳ)− 1
2
(φ(x) + φ(y)) ψ(x, ȳ)− 1

2
(φ(x) + φ(y))

0

p∈R2d

p=(Re(x),Im(x))

x=y x=y

p=(Re(y),Im(y))

Figure 3.2: Diagram of the restrictions of Ψ̃ to totally real vector spaces. First, we have
Ψ̃(p, x, ȳ) ∈ C∞(C2d

p ×Cd
x×Cd

y) . This is almost analytic off of p ∈ R2d, whose restriction to
p ∈ R2d is Ψ(p, x, ȳ) ∈ C∞(R2d

p ×Cd
x ×Cd

y). We can restrict Ψ to either p = (Re (x) , Im (x))
or p = (Re (y) , Im (y)) to get the same function as shown. When either of these functions
are restricted to x = y we get the zero function. Understanding various ∂ estimates on Ψ̃ is
the core part of this step of the proof.

The key properties of Ψ̃ to use is that Ψ̃(p, x, ȳ) = Ψ(p, x, ȳ) when p ∈ R2d and ψ(x, x̄) =
φ(x) (ie the extensions agree on certain totally real vector spaces). By Taylor expanding
from these totally real vector spaces, we prove Lemma 3.3.6.

Proof. Recall the chain rule for holomorphic differentiation:

∂z(f(g(z)) = (∂zf)(g(z)) · (∂zg)(z) + (∂zf)(g(z)) · (∂zḡ)(z)

for arbitrary f, g ∈ C∞(C).
We can use this when computing ∂xj∂pΨ̃ in conjunction with the implicit function theo-

rem, to see that

∂xj p̃(x, y) = −(∂p∂pΨ̃)−1
(
(∂xj∂pΨ̃) + (∂p∂pΨ̃)∂xj p̃(x, y)

)
(3.3.24)

where all derivatives of Ψ̃ are evaluated at (p̃(x, y), x, y). The inverted term is uniformly
bounded for x, y close to zero. We now claim the following ∂Ψ̃ estimates at (w̃1, w̃2, x, y) for
w̃1, w̃2 ∈ Cd:

∂xΨ̃ = O((|Im (w̃1)|+ |Im (w̃2)|+ |x− Re (w̃1)− iRe (w̃2)|)∞), (3.3.25)

∂yΨ̃ = O((|Im (w̃1)|+ |Im (w̃2)|+ |y − Re (w̃1) + iRe (w̃2)|)∞),

∂ p̃Ψ̃ = O((|Im (w̃1)|+ |Im (w̃2)|)∞).
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Here we prove (3.3.25). Before extension, the only term in Ψ depending on x is ψ(x, w̄)
(recall ψ is an almost analytic extension of φ – the Kähler potential satisfying i∂∂φ = ω). In
real coordinates, this is ψ(x1, x2, w1,−w2). An almost analytic extension in the w variable
can be written ψ̃(x1, x2, w̃1,−w̃2) : C4d → C. To compute ∂xψ̃, we Taylor expand about
(x1, x2,Re (w̃1) ,−Re (w̃2)) with K ∈ N terms, so ∂xψ̃(x1, x2, w̃1, w̃2) is

1

2
(∂x1 + i∂x2)

∑
|α|≤K

∂αw1,w2
ψ̃(x1, x2,Re (w̃1) ,−Re (w̃2))

α!
(iIm (w̃1) , iIm (w̃2))

α

+RK(x1, x2, w̃1, w̃2)

)
.

The ∂x operator can be commuted with the ∂αw1,w2
operator by Proposition 3.2.6. At

(x1, x2,Re (w̃1) ,Re (w̃2)), ψ̃ = ψ, and the ∂ estimates can be made uniform with respect
to differentiation of wi. Recalling how ψ is an almost analytic extension of φ provides the
estimate: (∂x1 + i∂x2)ψ(x1, x2, y1, y2) = O(|(x1 + ix2)− (y1 − iy2)|∞), so that for each α:

1

2α!
∂x∂

α
w1,w2

ψ̃(x1, x2,Re (w̃1) ,−Re (w̃2))(iIm (w̃1) , iIm (w̃2))
α

= |Im (w̃)||α| O(|x− Re (w̃1)− iRe (w̃2)|∞)

while ∂xRk = O(|Im (w̃))|K+1). This proves (3.3.25) and the others follow similarly.
Because Im (p̃(x, x̄)) = 0, by Taylor expansion: |Im (p̃(x, y))|2 ≤ C|x − ȳ|2 for some

C > 0. By Lemma 3.3.5, |x − Re (p̃1(x, y)) − iRe (p̃2(x, y)) | ≤ C|x − ȳ|. Using this, and
the estimate of ∂xΨ̃, we see that ∂xΨ̃(p̃(x, y), x, y) = O(|x− ȳ|∞). This is true for all terms
on the right side of (3.3.24), so that ∂xp̃(x, y) = O(|x − ȳ|∞). By an identical argument,
∂yp̃(x, y) = O(|x− ȳ|∞).

Lemma 3.3.7. For |x− ȳ| sufficiently small

p̃(x, y) =

(
1

2
(x+ y),

1

2i
(x− y)

)
+ O(|x− ȳ|∞).

Proof. From Lemma 3.3.6, we have that p̃ is almost analytic off the diagonal y = x̄. The
function (x, y) 7→ (2−1(x + y), (2i)−1(x − y)) is holomorphic and agrees with p̃ on y = x̄.
Therefore by uniqueness (modulo O(|x−ȳ|∞) error) of almost analytic extensions, the lemma
follows.

Summary of step 6. In this step we provided an estimate of p̃(x, ȳ), the critical point
of the phase Ψ̃(p, x, ȳ). We will now use this to provide derivative estimates of the terms
coming from the stationary phase expansion in (3.3.22).
Step 7: Prove symbol estimates of stationary phase terms
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A simple computation shows that from Lemma 3.3.7,

Re (p̃(x, y))1 + iRe (p̃(x, y))2 =
1

2
(x+ ȳ) + O(|x− ȳ|∞), (3.3.26)

where for a, b ∈ Cd, c = (a, b) ∈ C2d, we write c1 = a and c2 = b.
Then, recalling the definition of mR from (3.3.12) and using (3.3.26), we get that

mR(Re (p̃(x, ȳ))) = m

(
1

2
(x+ y) + O(|x− y|∞)

)
≲ m(x)(1 +N δ|x− y|)M0 .

(3.3.27)

Applying (3.3.27) to the derivative estimate of fj in (3.3.22), we get that

fj(x, ȳ) ∈ N2δjSδ(mR(p̃(x, ȳ))) ⊂ N2δjSδ(m(x)(1 +N δ|x− y|)M0). (3.3.28)

We similarly have that |p̃1(x, ȳ) + ip̃2(x, ȳ)− y| ≤ C|x− y| (for someC > 0), so that

fj(x, ȳ) ∈ N2δjSδ(m(y)(1 +N δ|x− y|)M0).

The support of these fj’s are contained in a strip along the diagonal, shrinking with
respect to N . Indeed, because p(x, ȳ, 0) = p̃(x, ȳ) = (2−1(x+ ȳ), (2i)−1(x− ȳ))+O(|x−y|∞)
we get that |Im (p(x, ȳ, 0))| ≲ |x − y|. Then observe that in (3.3.21), the term f̃(p) is
included, which by Proposition 3.2.7, is supported where |Im (p)| ≲ N−δ. Therefore, there
exists C > 0 such that

supp fj(x, ȳ) ⊂
{
|x− y| ≤ CN−δ} . (3.3.29)

But now we can apply (3.3.29) to (3.3.28) to see that:

fj(x, ȳ) ∈ N2δj (Sδ(m(x)) ∩ Sδ(m(y))) .

The remainder can be bounded similarly. For each α ∈ N4d

|(∂αx,x̄,y,ȳRJ)(x, ȳ)| ≲α,J

∑
|β|=2J

sup
z

|(∂αx,x̄,y,ȳ∂βz h)(x, ȳ, z)|

≲α,J N
2JδN |α|δ sup

z∈supph(x,ȳ,·)
mR(Re (p(x, ȳ, z))).

Now g̃2 (defined in (3.3.21)) is only supported where |p| < ε so there exists C > 0 such that

sup
z∈supph(x,ȳ,·)

mR(Re (p(x, ȳ, z))) ≤ Cmin(m(x),m(y))(1 +N δε)M0 ,

therefore

RJ(x, ȳ) ∈ N2δJ+δM0(Sδ(m(x)) ∩ Sδ(m(y))).
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We can bootstrap this to prove the better remainder bound stated in the Theorem. For any
J ∈ Z>0, we rewrite the sum and remainder in (3.3.19) as

J−1∑
j=0

N−jfj(x, ȳ) +N−J

J̃−1∑
j=J

NJ−jfj(x, ȳ) +NJ−J̃RJ̃(x, ȳ)

 (3.3.30)

where Z ∋ J̃ > J + (δM0)(1− 2δ)−1. This choice of J̃ ensures that NJ−J̃RJ̃(x, ȳ) belongs to
N2δJ(Sδ(m(x)) ∩ Sδ(m(y))). It is also clear that for each j = J, . . . , J̃ − 1, N−j+Jfj(x, ȳ) ∈
N2δJ(Sδ(m(x))∩Sδ(m(y))). We can therefore define the terms multiplied by N−J in (3.3.30)
as the remainder term RJ(x, ȳ) stated in the Theorem.

Summary of step 7. We showed in step 5 that derivatives of terms in the stationary
phase expansion in (3.3.19) are bounded in terms of the order function of f evaluated at the
critical point of the almost analytically extended phase, p̃(x, ȳ) (see (3.3.22)). From step 6,
we estimated p̃(x, ȳ) (Lemma 3.3.7) to provide more explicit symbol estimates for fj’s, and
the remainder terms, in the stationary phase expansion. We now have a local expansion of
the Schwartz kernel of the Toeplitz operator TNf . To prove symbolic calculus results, we
need to show this expansion is unique (modulo appropriate error) and that the principal
term is the principal part of f .
Step 8: Prove stationary phase terms are almost analytic off the diagonal

Lemma 3.3.8. We may choose an almost analytic extension of Ψ such that Ψ(p̃(t), t)) =
ψ(x, ȳ)− 2−1(φ(x) + φ(y)).

Proof. Because the Toeplitz quantization of the identity is the Bergman kernel, the phase
can be recovered up to an appropriate error. Recall that [BBS08] showed:

e−
N
2
(φ(x)+φ(y))TN,1(x, ȳ) ∼ eN(ψ(x,ȳ)− 1

2
(φ(x)+φ(y))

(
N

2π

)d ∞∑
0

N−jbj(x, ȳ).

This must agree, up to O(N−∞) error, with (3.3.19). It is therefore possible to choose Ψ̃
such that Ψ̃(p̃(t), t) = ψ(x, ȳ)− 2−1(φ(x) + φ(y)).

Lemma 3.3.9. All the fj(x, y)’s are almost analytic off of y = x̄.

Proof. When computing (∂x,y∆
j
z)h(x, ȳ, 0), observe the following properties of the functions

making up h in (3.3.21):

1. When ∂x falls on f̃ , we get (∂pf̃)(∂xp̃) + (∂pf̃)(∂xp̃). The first term is controlled by
almost analyticity of p̃ off of y = x̄ while the second term is controlled by almost
analyticity of f̃ off of p̃ ∈ R2d.
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2. When ∂x falls on g̃2, we get (∂1g̃2) + (∂3g̃2)(∂xp̃) + (∂3g̃2)(∂p̃) where ∂i and ∂i are the
holomorphic and anti-holomorphic derivatives of the ith argument of g respectively.
The first term is controlled by almost analyticity of B(x, w̄) off of w = x, the second
term is controlled by almost analyticity of p̃ off of y = x̄, and the third term is controlled
by almost analyticity off both totally real manifolds.

3. When ∂x falls on the determinant, we get control by the almost analyticity of p̃ off of
y = x̄.

Therefore

∂xfj(x, y) = N δ(1+2j+M0)O((|x− y|N δ)∞). (3.3.31)

Note that in this expansion, only knowledge of the kernel along the diagonal is required.
Indeed, if fj and gj agree along y = x, and obey (3.3.31), then by the Gaussian behavior of
the phase: (

N

2π

)d
eNψ(x,ȳ)

∑
N−j(fj(x, ȳ)− gj(x, ȳ)) = e

N
2
(φ(x)+φ(y))O(N−∞).

Summary of step 8. Here we show the terms coming from the stationary phase expansion
are almost analytic off the totally real vector space x = y which provides a unique expansion
(modulo appropriate error). The final step of the proof is to compute the first term along
the diagonal, and prove the global statement.
Step 9: Zeroth order term and global statement

Examining (3.3.20) and the subsequent equations, along the diagonal

f0(x, x̄) = f(x)B(x, x̄)B(x, x̄) det(∂∂φ(x)) det

(
∂q−1(x, x̄, z)

∂z

) ∣∣∣
z=0

.

This can all be explicitly computed. But note that nothing, except f , on the right-hand side
depends on f . And if f = 1, then TN,f = ΠN . By [BBS08], the leading order term of ΠN

is 1, therefore, we know that everything on the right-hand side of order N0, except f , must
be 1. Therefore f0(x, x̄) = f(x) + O(N−(1−2δ)m(x)). In the appendix, the second term is
computed.

We now have proven existence of fj locally, in a ball of radius ε, around any point x ∈ X.
Because each fj is unique along the diagonal, we can patch together f ′

js to construct a global
fj defined near the diagonal.
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3.3.2 Composition of Toeplitz operators

Suppose that f ∈ Sδ(m1) and g ∈ Sδ(m2) for two δ-order functions m1 and m2 and δ ∈
[0, 1/2). Roughly, this section constructs a function h ∈ Sδ(m1m2) such that TN,f ◦ TN,g ≈
TN,h. This h will be written as a star product: h = f ⋆g following the now standard notation
first introduced in [Bay+78]. We first formally construct f ⋆ g.

By Theorem 3.3.1, there exist functions fj and gj for j ∈ Z≥0 such that

TN,f (x, ȳ) ∼
(
N

2π

)d
eNψ(x,ȳ)

∞∑
j=0

N−jfj(x, ȳ),

TN,g(x, ȳ) ∼
(
N

2π

)d
eNψ(x,ȳ)

∞∑
j=0

N−jgj(x, ȳ)

in local coordinates.
Define the operators Cj : C∞(X;C) → C∞(X × X;C) by Cj(f) := B−1(x, ȳ)fj(x, ȳ).

Recall that B = 1 + N−1b1 + · · · is the amplitude of the Bergman kernel. Note that B is
bounded below for N sufficiently large. Explicitly, for x, y contained in a sufficiently small
neighborhood U , Cj are such that(

N

2π

)2d ˆ
U

eNΦx,ȳ(w)B(x, w̄)B(w, ȳ)f(w) dµ(w)

is asymptotically (
N

2π

)d
eNψ(x,ȳ)B(x, ȳ)

∞∑
j=0

N−jCj[f(·)](x, ȳ).

where

Φx,ȳ(w) := ψ(x, w̄)− φ(w) + ψ(w, ȳ).

By (3.3.20), Cj are differential operators of order at most 2j. Using these Cj, we can
formally construct f ⋆ g ∈ Sδ(m1m2) such that TN,f⋆g = TN,f ◦ TN,g + O(N−∞).

To achieve this, we again restrict ourselves to (x, y) near (x0, x0). In a neighborhood U
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of x0, (TN,f ◦ TN,g)(x, ȳ) is formally

ˆ
U

TN,f (x, w̄)TN,g(w, ȳ)e
−Nφ(w) dµ(w)

∼
(
N

2π

)2d ˆ
U

B(x, w̄)B(w, ȳ)eNΦx,ȳ(w)

(
∞∑
k=0

N−kCk[f ](x, w̄)

)

·

(
∞∑
j=0

N−jCj[g](w, ȳ)

)
dµ(w)

∼
(
N

2π

)2d ∞∑
j=0

N−j
ˆ
U

eΦx,ȳ(w)B(x, w̄)B(w, ȳ)

·

(∑
a+b=j

Ca[f ](x, w̄)Cb[g](w, ȳ)

)
dµ(w)

∼
(
N

2π

)d
eNψ(x,ȳ)B(x, ȳ)

∞∑
j=0

N−jkj(x, ȳ)

where for each j ∈ Z≥0:

kj(x, ȳ) =
∑
c+d=j

Cd

[ ∑
a+b=c

Ca[f ](x, ·)Cb[g](·, ȳ)

]
(x, ȳ). (3.3.32)

Now suppose that h ∼
∑
N−jhj is such that the terms in TN,h’s asymptotic expansion match

(3.3.32). Expanding TN,h asymptotically, we see that

TN,h(x, ȳ) ∼
(
N

2π

)d
eNψ(x,ȳ)B(x, ȳ)

∞∑
j=0

N−j
∑
c+d=j

Cd[hc](x, ȳ). (3.3.33)

We simply match the coefficients of N−j of (3.3.33) with (3.3.32) to get the relation

∑
c+d=j

Cd[hc](x, ȳ) =
∑
c+d=j

Cd

[ ∑
a+b=c

Ca[f ](x, ·)Cb[g](·, ȳ)

]
(x, ȳ). (3.3.34)

Recall that C0[f(·)](x, x̄) = f(x), therefore letting y = x and rearranging (3.3.34) gives us:

hj(x) =
∑
c+d=j

Cd

[ ∑
a+b=c

Ca[f ](x, ·)Cb[g](·, x̄)

]
(x, x̄)−

j∑
d=1

Cd[hj−d](x, x̄), (3.3.35)

which inductively gives the functions hj, which is sufficient as h0(x) = f(x)g(x). This
provides us with the following Lemma.
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Lemma 3.3.10 (Derivative estimates of (f ⋆ g)j). There exist linear bi-differential operators
Cj of order at most 2j such that hj(x) = Cj[f, g](x) agrees with hj written in (3.3.35).

Proof. This follows by induction on j. When j = 0, h0 = fg and so C0 is a zero order
operator. Next assume this is true for j − 1 and apply (3.3.35). The first summation
in (3.3.35) involves derivatives of order 2j, and by the induction hypothesis, the second
summation involves derivatives of order 2j.

To construct h via Borel’s Theorem (Proposition 3.2.5) we need to show that for each j,
hj ∈ N2δjSδ(m1m2). This follows immediately by Lemma 3.3.10, as

hj(x) = Cj[f, g](x) ∈ N2jδSδ(m1m2).

Theorem 3.3.11 (Composition estimate). For δ ∈ [0, 1/2), suppose m1 and m2 are two
δ-order functions on X (a quantizable Kähler manifold), f ∈ Sδ(m1) and g ∈ Sδ(m2). Then
there exists (f ⋆ g) ∈ Sδ(m1m2) (constructed via (3.3.35)) such that∥∥TN,(f⋆g) − TN,f ◦ TN,g

∥∥
L2(X,LN )→L2(X,LN )

= O(N−∞).

Proof. Let h = f ⋆ g (constructed asymptotically via (3.3.35) and Proposition 3.2.5) and let
K(x, y) be the Schwartz Kernel of TN,h − TN,f ◦ TN,g. By the Schur test:

∥TN,h − TN,f ◦ TN,g∥2L2(X,LN )→L2(X,LN )

≤
(
sup
x∈X

ˆ
X

∥K(x, y)∥L2(X,LN ) dµ(y)

)(
sup
y∈X

ˆ
X

∥K(x, y)∥L2(X,LN ) dµ(x)

)
.

By Theorem 3.3.1 and (3.3.2), we can approximate the Schwartz kernels of TN,f and TN,g
with J + 1 terms. That is, we may write

TN,f (x, ȳ) =

(
N

2π

)d
︸ ︷︷ ︸

:=cd

eNψ(x,ȳ)


J∑
j=0

N−jfj(x, ȳ)︸ ︷︷ ︸
:=FJ (x,ȳ)

+ e
N
2
(φ(x)+φ(y))O(N−J̃m1(x))︸ ︷︷ ︸

:=Rf,J (x,y)

where J̃ = (J + 1)(1 − 2δ) − d. Define GJ and Rg,J similarly as an approximation of the
kernel of TN,g. Then locally:

TN,f ◦ TN,g(x, ȳ) = I1 + I2 + I3,
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where

I1 := c2d

ˆ
U

eN(ψ(x,w̄)−φ(w)+ψ(w,ȳ))FJ(x, w̄)GJ(w, ȳ) dµ(w),

I2 := cd

ˆ
U

(
eNψ(x,w̄)FJ(x, w̄)Rg,J(w, y)

+eNψ(w,ȳ)GJ(w, y)Rf,J(x,w)
)
e−Nφ(w) dµ(w),

I3 :=

ˆ
X

e
N
2
(φ(x)+φ(y))O

(
N−2J̃m1(x)m2(x)

)
dµ(w).

Here U ⊂ X is a coordinate patch containing x and y which we assume exists, otherwise
(by the same reasoning as in the proof of Theorem 3.3.1), TN,f (x, ȳ) will be exp(N

2
(φ(x) +

φ(y))O(N−∞) which is bounded by a constant times the I3 term. Moreover, by the same
reasoning, we can just integrate over U , as the integral over X \U will similarly be negligible.

I3 is e
N
2
(φ(x)+φ(y))O

(
N−2J̃m1(x)m2(x)

)
. Using (3.2.8), I2 is bounded in absolute value

by:

cNd−J̃+δM0e
N
2
(φ(x)+φ(y))

ˆ
U

(
e−Nc|x−w|

2|FJ(x, w̄)|+ e−Nc|w−y|
2|GJ(w, ȳ)|

)
dµ(w)

≲ Nd−J̃e
N
2
(φ(x)+φ(y))N2M0δ

for some positive constant c > 0. Here we used that m1 and m2 are bounded by a constant
times N δM0 .

We now estimate I1 using the formal computation of hj from (3.3.35). We see that

I1 = cde
Nψ(x,ȳ)

2J∑
j=0

N−j(f ⋆ g)j(x, ȳ) + e
N
2
(φ(x)+φ(y))O(N−2̃Jm1(x)m2(x)).

Because h−
∑2J

j=0N
−jhj ∈ N−(2J+1)(1−2δ)Sδ(m1m2), we see that

TN,h(x, ȳ) = cde
Nψ(x,ȳ)

2J∑
j=0

N−jTN,hj(x, ȳ)

+ e
N
2
(φ(x)+φ(y))O(N−(2J+1)(1−2δ)+dm1(x)m2(x))

= cde
Nψ(x,ȳ)

2J∑
j=0

N−j(f ⋆ g)j(x, ȳ)

+ e
N
2
(φ(x)+φ(y))O(N−(2J+1)(1−2δ)+dm1(x)m2(x))

= I1 + e
N
2
(φ(x)+φ(y))O(N−2̃Jm1(x)m2(x))
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for sufficiently large J . Putting these estimates together, we get

K(x, y) = TN,(f⋆g) − (I1 + I2 + I3)

= e
N
2
(φ(x)+φ(y))

(
O
(
N−2̃Jm1(x)m2(x)

)
+ O

(
Nd+2M0δ−J̃

)
+ O

(
N−2̃Jm1(x)m2(x)

))
= e

N
2
(φ(x)+φ(y))O(N2M0δ+d−J̃).

We therefore get that

sup
x∈X

ˆ
X

|K(x, y)|e
−N
2

(φ(x)+φ(y)) dµ(y) = O(N−∞),

sup
y∈X

ˆ
X

|K(x, y)|e
−N
2

(φ(x)+φ(y)) dµ(x) = O(N−∞)

as J can be made arbitrarily large.

3.4 Applications of the exotic calculus

This symbol calculus allows us to get a parametrix construction, a functional calculus, and
a trace formula.

3.4.1 Parametrix construction

We begin by proving a parametrix construction of Toeplitz operators associated to symbols
in Sδ(m) which are elliptic with respect to m. This follows the usual parametrix construction
for psuedo-differential operators (see for instance [GS94, Theorem 4.1]).

Theorem 3.4.1 (Parametrix construction). Suppose δ ∈ [0, 1/2), m ≥ 1 is a δ-order func-
tion on X (a quantizable Kähler manifold), and f ∈ Sδ(m) is such that there exists C > 0
and z ∈ C such that

|f(x)− z| > Cm(x)

for all x ∈ X. Then there exists g ∈ Sδ(m
−1) such that

TN,f−z ◦ TN,g = 1 + O(N−∞), TN,g ◦ TN,f−z = 1 + O(N−∞),

and the principal symbol of g is (f0 − z)−1 +O(N−(1−2δ)m) where f0 is the principal symbol
of f .
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Proof. Define s1(x) := (f0(x) − z)−1 so that |s1(x)| ≤ Cm(x). For each α ∈ N2d locally
∂αx,x̄s1(x) can be estimated by the Faà di Bruno formula:

∂αx,x̄s1(x) =
∑
π∈Πα

cπ
(z − f0)|π|+1

∏
β∈π

∂βx,x̄(z − f0(x)),

where Πα is the set of partitions on the set (1, 2, . . . , |α|), β ∈ π runs through the blocks in
the partition π, and cπ is the constant from repeatedly differentiating x−1. For each π, note
that |β| = |π| ≤ |α| for β ∈ π so that:∣∣∣∣∣ cπ

(z − f0(x))|π|+1

∏
β∈π

∂βx,x̄(z − f0(x))

∣∣∣∣∣ ≲ (m(x))−|π|−1N |π|δ(m(x))|π|

≲ (m(x))−1N |α|δ.

We therefore have that s1 ∈ Sδ(m
−1). Next, using Theorem 3.3.11, let s2 ∈ Sδ(1) be such

that TN,f−z ◦ TN,s1 = 1 − N−(1−2δ)TN,s2 + O(N−∞). Then define s3 ∼
∑∞

j=0N
−j(1−2δ)s⋆j2 ,

where:

s⋆j2 := s2 ⋆ · · · ⋆ s2︸ ︷︷ ︸
j terms

.

By repeatedly applying Theorem 3.3.11, s⋆j2 ∈ Sδ(1) for all j ∈ Z≥0 so that s3 ∈ Sδ(1).
Lastly, define g := s1 ⋆ s3 ∈ Sδ(m

−1). We can check that

TN,f−z ◦ TN,g = TN,f−z ◦ TN,s1⋆s3 = TN,f−z ◦ TN,s1 ◦ TN,s3 + O(N−∞)

= (1−N−(1−2δ)TN,s2) ◦ TN,s3 + O(N−∞).

So that for each J ∈ N, we have

TN,f−z ◦ TN,g = (1−N−(1−2δ)TN,s2) ◦

(
J∑
j=0

N−(1−2δ)jTN,s2

)
+ O(N−(1−2δ)(J+1))

= 1 + O(N−(1−2δ)(J+1)).

Therefore TN,f−z ◦ TN,g = 1 + O(N−∞) so that g is a right-parametrix for f − z. We can
similarly construct gℓ as a left-parametrix for f − z. But note that

TN,gℓ = TN,gℓ ◦ (TN,f−z ◦ TN,g + O(N−∞)) = TN,g + O(N−∞).

Therefore g is also a left-parametrix for f − z. Lastly, the principal symbol of g (modulo
O(N−(1−2δ)) error, is just the product of the principal terms of s1 and s3, which is just the
principal term of s1, which is (f0 − z)−1.
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3.4.2 Functional calculus

Here we present functional calculus of Toeplitz operators using the Helffer–Sjöstrand formula.
For symbols bounded uniformly in N , this result is proven in [Cha03, Proposition 12]. Our
proof is adapted from results on functional calculus of pseudo-differential operators with
symbols in similarly defined symbol classes presented by Dimassi and Sjöstrand in [DS99,
Chapter 8].

Theorem 3.4.2 (Functional calculus). Suppose that δ ∈ [0, 1/2), m is a δ-order function
on X (a quantizable Kähler manifold) such that m ≥ 1, and f ∈ Sδ(m) is such that

1. f(x) ∈ R≥0 for all x ∈ X,

2. there exists C0 > 0 such that |f(x)| ≥ C−1
0 m(x)− C0.

Then for any χ ∈ C∞
0 (R;C), there exists g ∈ Sδ(m

−1) such that

χ(TN,f ) = TN,g + O(N−∞),

and the principal symbol of g is χ(f0) + O(N−(1−2δ)) where f0 is the principal symbol of f .

Proof. Let χ̃ be an almost analytic extension of χ such that ∂zχ(z) = O(|Im (z)|∞). Because
f is real-valued, [LeF18, Lemma 5.1.3] can be immediately adapted to Sδ(m) to see that TN,f
is self-adjoint. By the Helffer–Sjöstrand formula

χ(TN,f ) =
−1

π

ˆ
C
∂zχ̃(z)(z − TN,f )

−1 dm(z)

(see for instance [DS99, Theorem 8.1]). For Im (z) ̸= 0 we aim to construct an approximate
inverse of z − TN,f using the parametrix construction stated in Theorem 3.4.1. But first a
technical bound must be proven.

Lemma 3.4.3. If s1(z, x) = (z − f0(x))
−1, with z ∈ supp(χ̃(z)) and Im (z) ̸= 0, then for all

α ∈ N2d

|∂αx,x̄s1(z, x)| ≲ |Im (z)|−1−|α|N |α|δ(m(x))−1. (3.4.1)

Proof. First we prove a lower bound of |f(x) + z|. Write z = z1 + iz2. Let C1 > 0 be
sufficiently large so that for |z1 − 1| > C1 then χ̃(z) = 0. Let C2 = C0 − 1 + C1 (possibly
increasing C1 so that C2 ≥ 1). We may assume that |z2| < C3 on the support of χ̃ for some
C3 > 1. Then rearranging f(x) > m(x)C−1

0 − C0, we see that

m(x)

C0

< f(x) + 1− C1 + C2 < |f(x) + 1| − |z1 − 1|+ C2

< |f(x) + z1|+ C2 <
C2C3

|z2|
(|f(x) + z1|+ |z2|) <

2C2C3

|z2|
(|f(x) + z1 + iz2|).
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Therefore:

|f(x) + z| > 1

C0C2C3

|Im (z)|m(x).

We can then apply the Faà di Bruno formula in the same way as in the proof of Theorem
3.4.1 to get that for all α ∈ N2d

∂αx,x̄s1(z, x) ≲ |Im (z)|−1−|α| (m(x))−1N |α|δ

which proves (3.4.1).

We therefore have that s1 ∈ Sδ(m
−1), but with bounds depending on |Im (z)|. We can

now apply Theorem 3.4.1 to construct s2(z, x) ∈ Sδ(m
−1) such that

TN,z−f ◦ TN,s2 + O(N−∞) = TN,s2 ◦ TN,z−f + O(N−∞) = 1.

It can also be shown that for all α ∈ N2d,

|∂αx,x̄s2(z, x)| ≲ |Im (z)|−1−|α|N |α|δ(m(x))−1.

For any J ∈ N, we can approximate s2 by a finite sum of elements of Sδ(m
−1) (denoted

by s3) such that

TN,z−f ◦ TN,s3 = 1 + O(N−J).

For such a symbol s3, for any α ∈ N2d, there exists C = C(J, α) > 0 such that:

|∂αx,x̄s3(z, x)| ≲ |Im (z)|−C (m(x))−1. (3.4.2)

Therefore:

s4(x) :=
−1

π

ˆ
C
∂zχ̃(z)s3(z, x) dm(z)

exists for all x because ∂zχ̃ = O(|Im (z)|∞). By differentiating s4, applying (3.4.2), and
using ∂zχ̃ = O(|Im (z)|∞), we also see that s4 ∈ Sδ(m

−1). We finally check that TN,s4 is an
approximation of χ(TN,f ). Suppose u ∈ H0(X,LN), then for x ∈ X

TN,s4 [u](x) = ΠN

(
−1

π

ˆ
C
∂zχ̃(z)s3(z, x)u(x) dm(z)

)
=

−1

π

ˆ
C
∂zχ̃(z)ΠN [s3(z, x)u(x)] dm(z)

=

(
−1

π

ˆ
C
∂zχ̃(z)TN,s3 dm(z)

)
[u]

=

(
−1

π

ˆ
C
∂zχ̃(z)((z − TN,f )

−1 + O(N−J)) dm(z)

)
[u].
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Therefore TN,s4 = χ(TN,f )+O(N−J). Since J was arbitrary, by Borel’s theorem, there exists
g ∈ Sδ(m

−1) such that

χ(TN,f ) = TN,g + O(N−∞).

The principal symbol can be easily computed. Unraveling the above, the principal symbol
of s3 is (z − f0(x))

−1, so that the principal symbol of g is:

−1

π

ˆ
C
∂zχ̃(z)(z − f0(x))

−1 dm(z) = χ(f0)

by the Cauchy integral formula.

This can be generalized for Toeplitz operators with a negligible term.

Theorem 3.4.4. Suppose δ,m, f satisfy the hypotheses of Theorem 3.4.2, and {RN}N∈N is a
family of linear operators mapping H0(X,LN) → H0(X,LN) such that ∥RN∥ = O(N−∞) and
TNf +RN are self-adjoint for all N . Then for any χ ∈ C∞

0 (R;C), there exists g ∈ Sδ(m
−1)

such that:

χ(TN,f +RN) = TN,g + O(N−∞)

and the principal symbol of g is χ(f0) + O(N−(1−2δ)) where f0 is the principal symbol of f .

Proof. Let χ̃ be an almost analytic extension of χ, so that

χ(TN,f +RN) =
−1

π

ˆ
C
∂zχ̃(z)(z − TN,f −RN)

−1 dm(z).

But note that

(z − TN,f )
−1 − (z − TN,f −RN)

−1 = (z − TN,f )
−1RN(z − TN,f −RN)

−1. (3.4.3)

Both (z−TN,f )
−1 and (z−TN,f −RN)

−1 have operator norm controlled by N to some finite
power, so that the right-hand side of (3.4.3) is O(N−∞). Therefore:

χ(TN,f +RN) =
−1

π

ˆ
C
∂zχ̃(z)(z − TN,f )

−1 dm(z) + O(N−∞)

and we just follow the rest of the proof of Theorem 3.4.2.

3.4.3 Trace formula

A critical result required in proving a probabilistic Weyl law for Toeplitz operators in [Olt23]
is a trace formula. Fortunately, this is straightforward to compute by the explicit kernel
expansion described in Theorem 3.3.1.
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Theorem 3.4.5 (Trace formula). For δ ∈ [0, 1/2), suppose m is a δ-order function on X (a
quantizable Kähler manifold). Then if f ∈ Sδ(m),

Tr(TN,f ) =

(
N

2π

)d ˆ
X

f0(x) dµ(x) +

(ˆ
X

m(x) dµ(x)

)
O(Nd−(1−2δ)). (3.4.4)

Proof. By [LeF18, Proposition 6.3.4] and Theorem 3.3.1 (specifically (3.3.2) with J = 1),

Tr(TN,f ) =

ˆ
X

TN,f (x, x̄)e
−Nφ(x) dµ(x)

=

(
N

2π

)d ˆ
X

(
f0(x, x̄) + O(N−(1−2δ)m(x))

)
dµ(x).

By Theorem 3.3.1, f0(x, x̄) is f0(x) + O(N−(1−2δ)m(x)) and so (3.4.4) follows.
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Chapter 4

Proof of Probabilistic Weyl Law

4.1 Setup of main result

In this chapter, we use a slightly different notation. We let (X, σ) be a compact, connected,
d−dimensional Kähler manifold with a holomorphic line bundle L with positively curved
Hermitian metric locally given by h = e−φ. That is over each fiber x ∈ X and v ∈ Lx,
∥v∥h := e−φ(x)|v|. Given this, the globally defined symplectic form, σ, is related to the
Hermitian metric by i∂∂φ = σ. Fixing local trivializations, φ can be described as a strictly
plurisubharmonic smooth real-valued function (called the Kähler potential).

Let LN be the Nth tensor power of L, which has Hermitian metric hN := e−Nφ. Let
µd = σ∧d/d! be the Liouville volume form on X. This provides an L2 structure on sections
of LN . Indeed, if u and v are smooth sections on LN , then define

⟨u, v⟩LN :=

ˆ
X

hN(u, v) dµd.

Define L2(X,LN) as the completion of the smooth sections of LN with respect to this metric.
In this L2 space, let H0(X,LN) be the space of holomorphic sections. By the Hirzebruch–
Riemann–Roch Theorem (see for instance [Laz17, Theorem 1.1.24]) we have the following.

Proposition 4.1.1. The dimension of H0(X,LN) is finite, and is asymptotically(
N

2π

)d
vol(X) + O(Nd−1).

For the remainder of this chapter, denote dim(H0(X,LN)) by N = N (N). The orthog-
onal projection from L2(X,LN) to H0(X,LN) is called the Bergman projector and is denoted
by ΠN . Finally, given f ∈ C∞(X;C), the Toeplitz operators associated to f , written TNf ,
are defined for each N ∈ N as TNf(u) = ΠN(fu), where u ∈ H0(X,LN). In this way, TNf
are finite rank operators mapping H0(X,LN) to itself. For the remainder of this chapter,
we will fix a basis for H0(X,LN) so that TNf (and similar operators) can be considered as
matrices.
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The class of functions to quantize will often depend on N . To define this symbol class
requires local control of functions. Fix a finite atlas of neighborhoods (Ui, ζi)i∈I for the
Kähler manifold X.

Definition 4.1.2 (S(1)). S(1) is the set of all smooth functions f on X taking complex
values which can be written asymptotically f ∼

∑
N−jfj, where fj ∈ C∞(X;C) do not

depend on N . This tilde means that for all α ∈ N

∂αx

(
f ◦ ζi(x)−

M∑
j=0

N−jfj ◦ ζi(x)

)
= Oα(N

−j−1)

for all i ∈ I , and all α ∈ Nd. By Borel’s theorem, given any fj ∈ S(1) not depending on
N , there exists f ∈ S(1) such that f ∼

∑
N−jfj.

If f ∼
∑
N−jfj, we call f0 the principal symbol of f , which is unique modulo O(N−1).

We next add a random perturbation to these Toeplitz operators. For this we fix a
probability space (Ω,F ,P).

Definition 4.1.3 (Gω(N) and Wω(N)). For each N , let {ei : i = 1, . . . ,N } be an orthonor-
mal basis of H0(X,LN). Define:

Gω(N) :=
N∑
i,j=1

αj,kei ⊗ ej : H
0(X,LN) → H0(X,LN)

where αj,k are independent identically distributed complex Gaussian random variables with
mean zero and variance 1.

Similarly define Wω(N) =
∑N

i,j=1 α̃j,kei ⊗ ej, with α̃j,k independent identically distributed
copies of a complex random variable with mean zero and bounded second moment.

The ω in the subscript of these objects is to emphasize that these objects are random.
That is for each ω ∈ Ω and N ∈ N, Gω(N) is a finite rank operator. The majority of this
chapter describes perturbations by Gω(N) (the Gaussian case), while a brief note at the end
concerns the more general perturbations by Wω(N).

This chapter will prove almost sure weak convergence of the empirical distribution of
eigenvalues of randomly perturbed Toeplitz operators. The principal symbol of f must also
satisfy the property that there exists κ ∈ (0, 1] such that

µd({x ∈ X : |f0(x)− z|2 ≤ t}) = O(tκ) (4.1.1)

as t→ 0 uniformly for all z ∈ C.

Theorem 4.1.4 (Main result). Given f ∈ S(1) which satisfies (4.1.1) and Gω, a family of
random operators on H0(X,LN), as defined in Definition 4.1.3, then for each ε > 0 there
exists β = β(ε) ∈ (0, 1) and C > 0 such that if δ = δ(N) satisfies

Ce−N
β

< δ < C−1N−d/2−ε (4.1.2)
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then we have almost sure weak convergence of the empirical measures of TNf + δGω(N) to
vol(X)−1(f0)∗µd.

More precisely, if λi = λi(N,ω) are the (random) eigenvalues of TNf + δGω(N), then for
all φ ∈ C∞

0 (C)

1

N

N∑
i=1

φ(λi)
N→∞−−−→ 1

vol(X)

ˆ
C
φ(z)((f0)∗µd)(dz)

almost surely, where (f0)∗µd is the push-forward of the volume form µd on X by f0.
Moreover, for each ε > 0, the constant β(ε) in (4.1.2) can be chosen at most strictly less

than {
2ϵκ if ϵ < 1

2(κ+1)
κ
κ+1

if ϵ ≥ 1
2(κ+1)

where κ is defined in (4.1.1).

We expect Theorem 4.1.4 to hold for a much larger class of random perturbations than
described in Definition 4.1.3. Indeed, the only properties of Gω we use is a norm bound
(Lemma 4.2.6) and an anti-concentration bound (Proposition 4.3.7). See [VZ21] where Vo-
gel and Zeitouni establish similar logarithmic determinant estimates with these classes of
random perturbations, and [BPZ20, Remark 1.3] where Basak, Paquette, and Zeitouni de-
scribe random perturbations satisfying these properties.

Here we present a version of Theorem 4.1.4 for the more general random perturbations
Wω(N) as described in Definition 4.1.3.

Theorem 4.1.5 (General perturbations). For Wω(N) defined in Definition 4.1.3, f ∈ S(1)
satisfying (4.1.1), δ = N−d, then the empirical measures of TNf + δWω(N) converge almost
surely to (vol(X))−1(f0)∗µd.

A proof of this result is presented in §4.6.

Remark 4.1.1. We expect a wider range of δ’s and more general random perturbations in
Theorem 4.1.5 should lead to the same conclusion.

4.2 Probabilistic preliminaries

This chapter uses the probabilistic machinery of logarithmic potentials. A brief overview is
presented in this section.

Definition 4.2.1 (P(C)). Let P(C) be the collection of probability measures µ on C such
that

´
log(1 + |z|) dµ(z) <∞.
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Definition 4.2.2 (Logarithmic potential). For ν ∈ P(C), define the logarithmic potential
as: Uν(z) :=

´
C log |z − w| dν(w).

Using the fact that log |z| is the fundamental solution of the Laplacian, it can be shown
that, in the sense of distributions, ∆Uν = 2πν, which is the key ingredient in proving the
following theorem.

Proposition 4.2.3 (Convergence of random measures by logarithmic Potentials). ([SV21c,
Theorem 7.1])

Given {νN} ⊂ P(C) random measures such that almost surely supp νN ⊂ Λ for N ≫ 1
(with Λ ⋐ Λ̄ ⋐ Λ′ ⋐ C) and for almost all z ∈ Λ′: UνN (z) → Uν(z) almost surely for some
ν ∈ P(C) with supp ν ⊂ Λ. Then almost surely νN → ν weakly.

We wish to use Proposition 4.2.3 to prove almost sure weak convergence of the empirical
measures of TNf + δGω(N).

Definition 4.2.4 (νN). Let σN be the spectrum of TNf + δGω(N). Let

νN = N −1
∑
λ∈σN

δ̂λ

where δ > 0 depends on N , and δ̂λ is the Dirac distribution centered at λ. The logarithmic
potentials for these random measures are

UνN (z) =
1

N

∑
λ∈σN

log |z − λ| = 1

N
log | det(TNf + δGω(N)− z)|.

Definition 4.2.5 (ν). Let ν = vol(X)−1(f0)∗µd (recall µd is the volume measure on X)
which has logarithmic potential

Uν(z) =

 
X

log |z − f0(x)| dµd(x).

Where
ffl
X
f dµd is defined as vol(X)−1

´
f dµd.

Claim 4.2.1. For all N , νN , ν ∈ P(C).

Proof. For each N ∈ N
ˆ
C
log(1 + |z|) dνN(z) =

1

N

∑
λ∈σN

log(1 + |λ|)

≤ max
λ∈σN

log(1 + |λ|)

≤ log(1 + ∥TNf + δGω(N)∥) <∞.
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And similarly,

ˆ
C
log(1 + |z|) dν(z) = 1

vol(X)

ˆ
C
log(1 + |z|)[(f0)∗µd](dz)

≤ max
x∈X

log(1 + |f(x)|) <∞.

Let Λ be a neighborhood of f(X). Clearly supp ν ⊂ Λ, the same is true with probability
1 for νN , for sufficiently large N . A standard random matrix lemma is required to show this.

Lemma 4.2.6 (Norm of Gaussian matrix). ([Tao12, Exercise 2.3.3]) There exists C > 0
such that

P(∥Gω(N)∥ ≤ CN 1/2) ≥ 1− exp(−N ).

If an event has this lower bound of probability, it is said to occur with overwhelming proba-
bility.

For a fixed ε > 0, we will choose δ = δ(N) such that

0 < δ = O(N −1/2−ε). (4.2.1)

Lemma 4.2.7 (Borel–Cantelli). If An are events such that
∑∞

1 P(An) <∞, then the prob-
ability that An occurs infinitely often is 0.

Lemma 4.2.8 (Bound of TNf). Given f ∈ S(1), then ∥TNf∥LN→LN ≤ sup |f |.

Proof. This follows immediately by writing TNf = ΠN ◦Mf ◦ ΠN and recalling that ΠN is
unitary.

Claim 4.2.2. Almost surely, supp νN ⊂ Λ for N ≫ 1.

Proof. First note that ∥TNf + δGω(N)∥ ≤ ∥TNf∥ + δ ∥Gω(N)∥ ≤ sup f + N −ε with over-
whelming probability (by Lemma 4.2.6, (4.2.1), and Lemma 4.2.8). Let σN be the spectrum
of TNf + δGω. In this event, for sufficiently large N , σN ⊂ Λ. So if AcN is the event that
σN ⊂ Λ, then P(AcN) ≥ 1− e−N . Therefore

∑
P(AN) < ∞ and so by Lemma 4.2.7, almost

surely P (AcN) = 1 for N ≫ 1.

Now we recall the standard probability result guaranteeing almost sure convergence of
random variables.
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Lemma 4.2.9 (Almost sure convergence). If {YN}N∈N and Y are random variables on a
probability space (Ω,P) and εN is a sequence of numbers converging to 0 such that

∞∑
N=1

P(|YN − Y | > εN) <∞,

then YN → Y almost surely.

Therefore νN and ν satisfy the conditions of Proposition 4.2.3. So it suffices to show that
UνN (z) → Uν(z) for almost all z in the bounded set containing Λ. To prove this almost sure
convergence, it suffices to apply Lemma 4.2.9 with YN = N −1 log | det(TNf + δGω(N)− z)|
and Y =

ffl
log |z − f0(x)| dµd(x) for suitably chosen εN .

4.3 Setting up a Grushin problem

To control log |det(TNf + δGω(N)− z)| we follow the now standard method of setting up a
Grushin problem. This approach was used in [Vog20] and [Hag06], and is comprehensively
reviewed in [SZ07].

Let P = TNf and HN = H0(X,LN). Define the z-dependent self-adjoint operators
Q = (P − z)∗(P − z) and Q̃ = (P − z)(P − z)∗. These operators share the same eigenvalues
0 ≤ t21 ≤ · · · ≤ t2N . We can find an orthonormal basis of eigenvectors of Q for these
eigenvalues, denoted by ei, and similarly, and orthonormal basis of eigenvectors of Q̃ denoted
by fi. These eigenvectors can be chosen such that

(P − z)∗fi = tiei, (P − z)ei = tifi, i = 1, . . . , N .

Next we fix ρ ∈ (0,min(1/2, ε)), and define:

α := N−2ρ, A := max
{
i ∈ Z : t2i ≤ α

}
.

Definition 4.3.1 (Pδ). Let δj be the standard basis of CA, and define the operators R+(z) =∑A
1 δi ⊗ ei : HN → CA and R−(z) =

∑A
1 fi ⊗ δi : CA → HN , where we use the notation

(u⊗ v)(w) = ⟨w, v⟩u. For each z ∈ C and δ ≥ 0, define

Pδ(z) :=

(
P + δGω(N)− z R−(z)

R+(z) 0

)
:

(
HN

CA

)
→
(

HN

CA

)
. (4.3.1)

Lemma 4.3.2. ([Vog20, §5.1]) If δ = 0, then Pδ, as defined in (4.3.1), is bijective with
inverse

E 0(z) =

(∑N
A+1

1
ti
ei ⊗ fi

∑A
1 ei ⊗ δi∑A

1 δi ⊗ fi −
∑A

1 tiδi ⊗ δi

)
:=

(
E0(z) E0

+(z)
E0

−(z) E0
−+(z)

)
. (4.3.2)
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To ease notation, the z in the argument for these operators will often be dropped. Unless
specified, all estimates are uniform in z.

Claim 4.3.1 (Invertibility of Pδ). Pδ is invertible if δ ∥Gω(N)E0∥ ≪ 1.

Proof. By computation

PδE 0 = 1 +

(
δGω(N)E0 δGω(N)E0

+

0 0

)
:= 1 +K.

If ∥K∥ < 1 (which is true given the hypothesis), then (I +K)−1 exists as a Neumann series,
and we get PδE 0(I +K)−1 = I (a similar argument shows this is a left inverse as well).

Lemma 4.3.3 (Norm of E0). In the notation of (4.3.2), ∥E0∥ ≤ α−1/2.

Proof. By construction, E0 =
∑N

M+1(ti)
−1ei ⊗ fi, so that ∥E0∥ = ∥E0fM+1∥ = (tM+1)

−1 ≤
α−1/2.

Lemma 4.3.4 (Norm of E0
+). In the notation of (4.3.2),

∥∥E0
+

∥∥ = 1.

Proof. By construction E0
+(z) =

∑M
1 ei ⊗ δi which has norm 1.

These lemmas, along with Lemma 4.2.6, guarantee that if δ = O(α1/2N −1/2), then Pδ

is invertible with overwhelming probability. Denote the inverse of Pδ by E δ with the same
notation for its components as in (4.3.2).

Define P δ = P + δGω(N). By Schur’s complement formula, if P δ − z is invertible,

det

(
P δ − z R−
R+ 0

)
= det(P δ − z) det(−R+(P

δ − z)−1R−).

Writing PδE δ = 1, we get that −R− = (P δ − z)Eδ
+(E

δ
−+)

−1 and R+E
δ
+ = 1. Therefore

−R+(P
δ − z)−1R− = (Eδ

−+)
−1, so that

log | det(P δ − z)| = log | detPδ(z)|+ log | detEδ
−+(z)|. (4.3.3)

Note that P δ − z is invertible if and only if Eδ
−+ is invertible. Therefore (4.3.3) holds even

when P δ − z is not invertible.
Therefore, to prove Theorem 4.1.4, it suffices to show summability of the probability of

the events:

AN :=


∣∣∣∣∣∣∣∣(N )−1(log | detPδ|+ log | detEδ

−+(z)|)−
 
X

log |z − f0(x)| dµ︸ ︷︷ ︸
:=B

∣∣∣∣∣∣∣∣ > εN

 .
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We let εN = N−γ for a suitably chosen γ = γ(d, κ) > 0. Expand B = B1 +B2 +B3 where:

B1 = N −1 log | detP0| −
 
X

log |z − f0(x)| dµ(x), (4.3.4)

B2 = N −1(log | detPδ| − log | detP0|), (4.3.5)

B3 = N −1 log | detEδ
−+|. (4.3.6)

Controlling B1 requires the most work as it requires utilizing the calculus of Toeplitz op-
erators. However, it is completely deterministic, and remains true for unperturbed operators.
B2 will be easily shown to be negligible. Proving a lower bound on B3 is the key ingredient
in proving Theorem 4.1.4, as it will force the events AN to sufficiently small probability.
Without a perturbation, B3 will have no lower bound.

Proving bounds on B2 and B3 closely follow [Vog20].

Lemma 4.3.5 (Bound on E−+). In the notation of (4.3.2),
∥∥E0

−+

∥∥ ≤
√
α.

Proof. By construction, E0
−+ = −

∑A
1 tjδj ⊗ δj, so

∥∥E0
−+

∥∥ = |E0
−+(δA)| = tA ≤

√
α.

Lemma 4.3.6 (Bound on Eδ). In the notation of (4.3.2),
∥∥Eδ

∥∥ ≤ 2α−1/2 with overwhelming
probability.

Proof. By the Neumann construction,
∥∥Eδ

∥∥ = ∥E0(1 + δGω(N)E0)−1∥ ≤ 2 ∥E0∥ which is

bounded by 2α−1/2 by Lemma 4.3.3.

Claim 4.3.2 (Bound on B2). In the notation of (4.3.5), B2 = O(δα−1/2N 1/2) with over-
whelming probability.

Proof. Using Jacobi’s formula, (log detA)′ = Tr(A−1A′), we have that

N B2 = log | detPδ| − log | detP| =
ˆ δ

0

d

dτ
log | detPτ | dτ

=

ˆ δ

0

Re

(
Tr(E τ d

dτ
Pτ )

)
dτ =

ˆ δ

0

Re (Tr(EτGω(N))) dτ.

Taking absolute values and using properties of trace norms

| log | detPδ| − log | detP0|| ≤ δ sup
τ∈[0,δ]

∥Eτ∥ ∥Gω(N)∥tr

≤ O(δα−1/2N ∥Gω(N)∥),
(4.3.7)

where we used Lemma 4.3.6, and Hölder’s inequality for the Schatten norm. Recalling the
bound on Gω, (4.3.7) is O(δα−1/2N 3/2) with overwhelming probability.

The following theorem about singular values of randomly perturbed matrices is required
for proving a lower bound of B3. Given a matrix B, let s1(B) ≥ s2(B) ≥ · · · ≥ sN(B) be its
singular values.



CHAPTER 4. PROOF OF PROBABILISTIC WEYL LAW 62

Proposition 4.3.7. If B is an N ×N complex matrix and Gω(N) is a random matrix with
independent identically distributed complex Gaussian entries of mean 0 and variance 1, then
there exists C > 0 such that for all δ > 0, t > 0:

P(sN(B + δGω(N)) < δt) ≤ CNt2.

Proof. See [Vog20, Theorem 23], which is a complex version proven by Sankar, Spielmann,
and Teng in [SST06, Lemma 3.2].

Claim 4.3.3 (Bound on B3). In the notation of (4.3.6), B3 obeys the probabilistic upper
bound

P(N −1 log | detEδ
−+| < 0) > 1− e−N , (4.3.8)

for N ≫ 1. And B3 obeys the probabilistic lower bound: there exists there exists C > 0 such
that for all δ > 0

P
(
N −1 log | detEδ

−+| ≥ AN −1 log(δt)
)
> 1− CN t2 − e−N .

Proof. First, by the Neumann series construction and choice of δ, with overwhelming prob-
ability,∥∥Eδ

−+

∥∥ ≤
∥∥Eδ

−+ − E0
−+

∥∥ + ∥∥E0
−+

∥∥ =
∥∥E0

−(1− δGω(N)E0)−1δGω(N)E0
+

∥∥ + ∥∥E0
−+

∥∥
≤ 2 ∥δGω(N)∥ + α1/2 ≤ Cα1/2.

So, in this event,
∥∥Eδ

−+

∥∥ ≤ Cα1/2 < 1 for N ≫ 1, and therefore log
∣∣detEδ

−+

∣∣ < 0 proving
(4.3.8).

For the lower bound, first note that

log
∣∣detEδ

−+

∣∣ = A∑
1

log sj(E
δ
−+) ≥ A log sA(E

δ
−+).

For a matrix B, let t1(B) be the smallest eigenvalue of
√
B∗B, so sA(E

δ
−+) = t1(E

δ
−+).

Assume that P − z is invertible. Using that (E0
−+)

−1 = −R+(P − z)−1R− and properties of
singular values of sums and products of trace class operators, we get

(t1(E
0
−+))

−1 = s1((E
0
−+)

−1) ≤ s1(R−)s1(R+)s1((P − z)−1)

= ∥R+∥ ∥R−∥ s1((P − z)−1) = s1((P − z)−1)

= (t1(P − z))−1 = sN ((P − z)−1).

For δ = O(N −1/2α1/2), this holds for Eδ
−+ (the event of a singular matrix has probability

zero and the singular values depend continuously on δ) so sA(E
δ
−+) = t1(E

δ
−+) ≥ sN (P +

δGω(N)− z) with overwhelming probability.
Using Proposition 4.3.7, in the event that ∥Gω(N)∥ ≤ CN 1/2 (overwhelming probability)

and sN (P − z + δGω(N)) > δt (probability at least 1−CN t2), we have that sA(E
δ
−+) > δt

with probability greater than 1− CN t2 − e−N . Therefore

log | detEδ
−+| ≥ A log sA(E

δ
−+) ≥ A log(δt)

with probability ≥ 1− e−N − CN t2.
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4.4 Bound on B1

This section is devoted to estimating B1 (as in (4.3.4)) which involves computing the trace
of a function of a Toeplitz operator belonging to an exotic symbol class. This closely follows
[Vog20], however several simplifications arise partially due to requiring weaker bounds, and
several modifications are required as we are working with Toeplitz operators.

Claim 4.4.1 (Bound on B1). For P defined in (4.3.1),

log | detP0| = Nd

 
X

log |f0(x)− z|2 dµ+ O(Nd−min(2ρκ,(1−2ρ)) log(N)).

Proof. Let’s first consider some preliminary reductions in computing log |detP0|. By Schur’s
complement formula, | detP0|2 = | det(P − z)|2| detE0

−+|−2. The first term is:

| det(P − z)|2 = detQ =
N∏
i=1

t2i .

Because E0
−+ = −

∑A
1 tjδj ⊗ δj (recall A is the largest integer such that t2A ≤ α), the second

term is

| detE0
−+|−2 =

(
A∏
i=1

t2i

)−2

,

therefore

| detP0|2 =
N∏

i=A+1

t2i = α−A
N∏
i=1

1α(t
2
i ) = α−A det 1α(Q)

where 1α = max(x, α). If χ is a cut-off function identically 1 on [0, 1], and supported in
[−1/2, 2], then x+ (α/4)χ(4x/α) ≤ 1α(x) ≤ x+ αχ(x/α) for x ≥ 0. Therefore

det
(
Q+ 4−1αχ

(
Q/(4−1α)

))
≤ det(1α(Q)) ≤ det (Q+ αχ(Q/α)) . (4.4.1)

Now fix 1 ≫ α1 > α, so that log det(Q+ αχ(Q/α)) can be written

−
ˆ α1

α

d

dt
log det(Q+ tχ(Q/t)) dt+ log det(Q+ α1χ(Q/α1)). (4.4.2)

First the integrand is estimated. Let ψ(t) = (t− tχ′(t))(1 + χ(t))−1 so that

d

dt
log(x+ tχ(x/t)) = t−1ψ(x/t)
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for t > 0 and ψ ∈ C∞
0 (R≥0). Therefore, by Jacobi’s identity,

d

dt
log det(Q+ tχ(Q/t)) = Tr(t−1ψ(Q/t)).

While morally the same, here we diverge from [Vog20]’s proof to handle this trace term, and
must rely on chapter 3. The main issues are that Q is the composition of Toeplitz operators,
which may no longer be a Toeplitz operator (but is modulo O(N−∞) error), Q/t belongs
to an exotic symbol class so to compute ψ(Q/t) requires an exotic calculus, and the trace
formula (Theorem 3.4.5) has weaker remainder than for quantizations of tori.

Let ρt be such that t = N−2ρt . By Theorem 3.3.11, Q = TNq + O(N−∞), where the
principal symbol of q is |f0 − z|2. For each t, Q/t is (modulo O(N−∞)) a Toeplitz operator
with symbol in Sρt(mt) where mt = q0/t+ 1, by Example 3.2.2. And so, by Theorem 3.4.2,
there exists qt ∈ Sρt(m

−1
t ), such that ψ(Q/t) = TN(qt) + EN(t). Where qt has principal

symbol ψ(q/t) and EN(t) = O(N−∞) (with estimates uniform over t). Therefore

ˆ α1

α

d

dt
log det(Q+ tχ(Q/t)) dt =

ˆ α1

α

Tr(t−1ψ(Q/t)) dt

=

ˆ α1

α

t−1Tr(TN(qt) + EN(t)) dt.

The error term is ˆ α1

α

t−1Tr(EN(t))dt = O(N−∞)

because EN(t) is uniformly O(N−∞). While for each t, Theorem 3.4.5 shows that

Tr(TN(qt)) =

(
N

2π

)d ˆ
X

ψ(q0/t) dµd(x) + t−1O(Nd−1)

because m−1 is bounded. Thereforeˆ α1

α

d

dt
log det(Q+ tχ(Q/t)) dt

=

ˆ α1

α

(ˆ
X

(
N

2π

)d
t−1ψ(q0/t) dµd(x) + t−2O(Nd−1)

)
dt

=

(
N

2π

)d ˆ
X

log(q0 + tχ(q0/t))
∣∣∣t=α1

t=α
dµ(x) + O(Nd−1α).

Next the second term of (4.4.2) is computed. Because α1 is fixed, Q/α1 has symbol in
S(1). Therefore, by Theorem 3.4.2, Q + α1χ(Q/α1) = TNr + EN (with ∥EN∥ = O(N−∞))



CHAPTER 4. PROOF OF PROBABILISTIC WEYL LAW 65

where r ∈ S(1) with principal symbol q0 + α1χ(q0/α1). Let r
t = tr + (1− t) ∈ S(1), so that

log det(Q+ α1χ(Q/α1)) =

ˆ 1

0

d

dt
log det(TNr

t + tEN) dt

=

ˆ 1

0

Tr

((
TNr

t + tEN
)−1
(
d

dt
TNr

t + EN

))
dt.

The principal symbol of rt is r10 = t(q0 + α1χ(q0/α1)) + (1− t). Note that when x ≥ 0, then
x+ α1χ(x/α1) ≥ α1 > 0. Therefore (rt0) ≥ α1 .

Lemma 4.4.1. There exists s(t) ∈ S(1) (with bounds uniform in t) such that (TNr
t +

tEN)
−1 = TNs(t) + O(N−∞), and the principal symbol of s(t) is (rt0)

−1.

Proof. By Theorem 3.4.1, there exists a symbol ℓ = ℓ(t) ∈ S(1) which inverts (modulo
O(N−∞) error) TNr

t, and has principal symbol (rt0)
−1. But then

(TNr
t + tEN)TNℓ = 1 +K

with K = O(N−∞), using that tEN = O(N−∞) and TNℓ has norm bounded independent of
N . By Neumann series, for N ≫ 1, (1 +K) is invertible, so that:

(TNr
t + tEN)(TNℓ)(1 +K)−1 = 1.

(TNℓ)(1 +K)−1 will be a Toeplitz operator, modulo a O(N−∞) term, with symbol ℓ which
has principal symbol (rt0)

−1. By repeating this argument, but left-composing by TNℓ, we get
the lemma.

Clearly d
dt
TNr

t = TN(r − 1) so using Lemma 4.4.1, we get that(
TNr

t + tEN
)−1
(
d

dt
TNr

t + EN

)
is (modulo O(N−∞)) a Toeplitz operator with principal symbol (rt0)

−1( d
dt
rt0). So by Theorem

3.4.5

Tr

((
TNr

t + tEN
)−1
(
d

dt
TNr

t + EN

))
=

(
N

2π

)d ˆ
X

(rt0)
−1

(
d

dt
rt0

)
dµd(x) + O(Nd−1)

which when integrated from t = 0 to t = 1 becomes:(
N

2π

)d ˆ
X

log(r10)dx+ O(Nd−1)

=

(
N

2π

)d ˆ
X

log(q0 + α1χ(q0/α1)) dµd(x) + O(Nd−1).
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Therefore (4.4.2) becomes:(
N

2π

)d ˆ
X

log(q0 + αχ(q0/α)) dµd + O(Nd−1α−1).

A calculus lemma is required to estimate
´
X
log(q0 + αχ(q0/α)) dx.

Lemma 4.4.2. Given q ∈ C∞(X;R≥0) such that µd ({x ∈ X : q(x) ≤ t}) = O(tκ) as t → 0
for κ ∈ (0, 1], and χ ∈ C∞

0 ((−1/2, 2); [0, 1]) identically 1 on [0, 1]. Then

ˆ
X

log(q + αχ(q/α)) dµd =

ˆ
X

log(q) dµd + O(ακ).

Proof. Let g(t) = log(t + αχ(t/α)) and m(t) = µd({x ∈ X : q(x) ≤ t}). Then, letting q1 =
max q + 2α,

ˆ
X

log(q + αχ(q/α))− log(α) dµd =

ˆ
X

g(q(x))− g(0) dµd

=

ˆ
X

ˆ q(x)

0

g′(t) dt dµd

=

ˆ q1

0

g′(t)

ˆ
q(x)>t

dµd dt

=

ˆ q1

0

g′(t)(vol(X)−m(t)) dt

= vol(X)(g(q1)− log(α))−
ˆ q1

0

g′(t)m(t) dt.

So that: ˆ
X

log(q + αχ(q/α) dµd = vol(X)g(q1)−
ˆ q1

0

g′(t)m(t) dt. (4.4.3)

Similarly, if g̃(t) = log(t), we get an analogous expression as (4.4.3), that is:

ˆ
X

log(q) dµd = vol(X)g̃(q1)−
ˆ q1

0

g̃′(t)m(t) dt.
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Note that g(q1) = g̃(q1). Therefore:∣∣∣∣ˆ
X

log(q + αχ(q/α))− log(q) dµd

∣∣∣∣ = ∣∣∣∣ˆ q1

0

(g̃′(t)− g′(t))m(t) dt

∣∣∣∣
=

∣∣∣∣ˆ q1

0

(
1

t
− 1 + χ′(t/α))

t+ αχ(t/α)

)
m(t) dt

∣∣∣∣
=

∣∣∣∣∣
ˆ q1/α

0

(
1

s
− 1 + χ′(s)

s+ χ(s)

)
m(sα) ds

∣∣∣∣∣
≲
ˆ 2

0

s−1m(sα) ds

≲ ακ
ˆ 2

0

sκ−1 ds ≲ ακ.

Here we use that χ(0) = 1 to get a lower bound on |s+χ(s)|, and the fact that χ(s)− sχ′(s)
is supported in (0, 2).

Applying this lemma, we get:

log det(Q+ αχ(Q/α)) =

(
N

2π

)d ˆ
X

log(q) dµd(x) + O(ακ) + O(Nd−(1−2ρ)).

Recalling that (N/2π)dN −1 = vol(X)−1 + O(N−1), we get that:

log det(Q+ αχ(Q/α)) = (N + O(N−1))

 
log(q) dµd + O(Nd−(1−2ρ)). (4.4.4)

´
X
log(q) dµd can be uniformly bounded in z, so that the O(N−1) term can be absorbed into

O(Nd−(1−2ρ)). By (4.4.1), we get the following lower bound by replacing α by α/4:

log det(Q+ αχ(Q/α)) ≥ N

 
log(q) dµd + O(Nd−(1−2ρ)). (4.4.5)

Lemma 4.4.3 (Bound on A). The number of eigenvalues of Q that are less than α is

O(NdN−min(2ρκ,(1−2ρ))).

Proof. Let ψ ∈ C∞
0 ([−1/2, 3/2]; [0, 1]) be identically 1 on [0, 1]. It then suffices to estimate

Tr(ψ(Q/α)). By Theorem 3.4.2, ψ(Q/α) = TN,q2+O(N−∞), where q2 ∈ Sρ(1) with principal
symbol ψ(q/α).

Then by Theorem 3.4.5

Tr(ψ(Q/α)) = Tr(TN,q2 + O(N−∞))

= (N/2π)d
ˆ
X

ψ(q/α) dµd(x) + O(Nd−(1−2ρ))

≲ Ndακ +Nd−(1−2ρ) = O(NdN−min(2ρκ,1−2ρ)).
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Therefore, putting everything together, we get that

log | detP0| = 1

2
log(| detP0|2) = 1

2
log(α−A det 1α(Q))

=
A

2
log(1/α) +

1

2
log det(1αQ)).

(4.4.4) and (4.4.5) provide upper and lower bounds of 2−1 log det(1α(Q)). Then using that
2−1 log q0 = |f0 − z| and Lemma 4.4.3 we get:∣∣∣∣log | detP0| − N

 
X

log |f0 − z|dµd
∣∣∣∣ ≲ A log(1/α) + ακ +Nd−(1−2ρ)

≲ Nd−min(2ρκ,(1−2ρ)) log(N)

+N−2ρκ +Nd−(1−2ρ)

≲ Nd−min(2ρκ,(1−2ρ)) log(N).

Recall N B1 = log | detP0| − N
ffl
log |z − f0(x)| dµd, so that

B1 = O(N−min(2ρκ,(1−2ρ)) log(N)).

4.5 Summability of AN

Recall that AN = {|B(N)| > εN}, where B(N) = B1 +B2 +B3 with:

B1 = N −1 log | detP0| −
 

log |z − f0(x)| dµd(x),

B2 = N −1(log | detPδ| − log | detP0|),
B3 = N −1 log | detEδ

−+|.

The following table summarizes the bounds on B1, B2, and B3.

Bound Probability of Bound Reference

B1 = O(N−min(2ρκ,(1−2ρ)) log(N)) 1 Claim 4.4.1

B2 = O(δα−1/2N 1/2) > 1− exp(−N ) Claim 4.3.2
B3 ≥ N −1A log(tδ) > 1− CN t2 − exp(−N ) Claim 4.3.3

B3 < 0 > 1− exp(−N ) Claim 4.3.3

Recall that ρ ∈ (0,min(1/2, ε)) and α = N−2ρ. Theorem 4.1.4 will follow if
∑

P(AN) <
∞ for εN = N−γ. Recall that δ = O(N−d/2−ε) = O(N−d/2α1/2). Fix 0 < γ < min(ε −
ρ, 2ρκ, 1− 2ρ).
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Then P(AN) = P(B > N−γ) + P(B < −N−γ). The first term is:

P(B > N−γ) = P(B3 > N−γ −B2 −B1).

Because γ < ε − ρ and B2 = O(Nρ−ε) (with overwhelming probability), we see that B2 =
O(N−γ) (with overwhelming probability). Similarly, because of the bound on B1 and the
choice of γ, B1 = O(N−γ). So if N is sufficiently large, N−γ − B2 − B1 ≥ CN−γ > 0. But
then by Claim 4.3.3, P(B > N−γ) ≤ e−N

d
for N ≫ 1.

Similarly, for N sufficiently large, there exists C0 ∈ (0, 1/2) such that, |B1| + |B2| <
C0N

−γ, so P(B < −N−γ) ≤ P(B3 < −(1− C0)N
−γ) = 1− P(B3 ≥ −(1− C0)N

−γ). By the
choice of γ, bound on A from Lemma 4.4.3, and selecting t = N −2/d−1/2, we get for large
enough N : −(1− C0)N

−γ ≤ N −1A log(δt) as long as:

−N−γ(1− C0) ≤ N −1A log(δ).

This requires that δ ≫ e−N
β
for β = min(2ρκ, 1 − 2ρ) − γ ∈ (0, 1). In this case, by Claim

4.3.3,

P(B3 > −N−γ) ≥ P(B3 > AN −1 log(δt))

≥ 1− CN t2 − e−N

= 1− CN −2/d + e−N .

Therefore P(B < −N−γ) ≤ CN−2 + e−N
d
for N ≫ 1.

With this,
∑∞

N=1 P(AN) = C +
∑

N≫1 P(AN) ≤ C +
∑

N≫1(N
−2 + 2e−N

d
) < ∞ which

proves Theorem 4.1.4.
Note that if ε > (2(κ+1))−1, then we can select ρ = (2(κ+1))−1 and choose γ arbitrarily

small, so that β = κ(κ + 1)−1 − γ. While if ε < (2(κ + 1))−1, then the maximum β can be
is 2ϵκ. Therefore we have:

β <

{
2ϵκ if ϵ < 1

2(κ+1)
,

κ
κ+1

if ϵ ≥ 1
2(κ+1)

.

4.6 General random perturbations

In this section, we provide a discussion about how to modify the proof of Theorem 4.1.4
(Gaussian random perturbations) to prove Theorem 4.1.5 (more general random perturba-
tions). We also deduce Theorem 1.0.1 (stated in §1.1) from Theorem 4.1.5.

Proof. Under the assumptions of Wω(N) (see Definition 4.1.3), we have the following prob-
abilistic norm bound:

E[∥Wω(N)∥2] =
N∑
i,j=1

E[|(Wω(N))i,j|2] = O(N 2), (4.6.1)
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as well as the following anti-concentration bound (from [TV09, Theorem 3.2]): for γ0 ≥ 1/2,
A0 ≥ 0, there exists a c > 0 such that if M is a deterministic matrix with ∥M∥ ≤ N γ0 then

P(sN (M + Wω(N)) ≤ N −(2A0+1)γ0) ≤ c
(
N −A0+o(1) + P(∥Wω(N)∥ ≥ N γ0)

)
. (4.6.2)

Recall, for an N ×N matrix A, we denote s1 ≥ s2 ≥ · · · ≥ sN(A) the singular values of A.
From (4.6.1), and Markov’s inequality, we get

P(∥Wω(N)∥ ≥ Nd−1) = O(N−2)

therefore if δ = N−d then δ ∥Wω(N)∥ = O(N−1) with probability at least 1− CN−2. From
this, Claim 4.2.2 (the supports of the random empirical measures being contained in a
bounded set for N ≫ 1) will follow by an identical argument.

Next, with probability at least 1 − CN−2, we have δ ∥Wω(N)∥α1/2 ≪ 1. In this event,
we can build our perturbed Grushin problem the same way as in Section 4.3.

Next, we have to modify the estimate of B2 which was estimated in Claim 4.3.2. For
this, we simply modify (4.3.7) with a weaker estimate on the probability ∥Wω(N)∥ is small.
Specifically, we see there exists C > 0 such that

P(B2 = O(α−1/2N−1)) > 1− CN−2.

The final modification is in estimating B3 = N −1 log | detEδ
−+|. We see, by the same

argument presented in Section 4.3, that

P(B3 < 0) ≥ 1− CN−2.

To prove a lower bound, we go through the same argument, to get that:

log | detEδ
−+| ≥ A log |sN (TNf − z + δWω(N))|.

Next, let

K0 := sup
z∈Λ

∥TNf − z∥ = O(1)

(recall Λ is a neighborhood of f(X)). By (4.6.2) (with γ0 = 1 and A0 = 2), we have (for
N ≫ 1)

P(sN (TNf − z + δGω(N)) ≤ N−7d)

= P(sN (δ−1K−1
0 (TNf − z) +K−1

0 Wω(N)) ≤ (Nd)−(2A0+1)γ0)

≤ c(N−2d+o(1) + P(
∥∥K−1

0 Wω(N)
∥∥ ≥ N−d))

≤ cN−2.
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Here we use that
∥∥δ−1K−1

0 (TNf − z)
∥∥ ≤ Nd. With this, we can proceed as in Section 4.5,

with weaker probabilistic estimates. We choose ρ ∈ (0, 1/2), and 0 < γ < min(2ρκ, 1− 2ρ).
Writing P(AN) = P(B > N−γ) + P(B < −N−γ), we see that

P(B > N−γ) ≤ CN−2

for N ≫ 1. Similarly, in the event sN (TNf − z + δWω(N)) ≥ N−7d, we have (for N ≫ 1)

A log |sN (TNf − z + δWω(N))| ≤ Nd−γ

so that

P(B3 > −N−γ) ≥ P(B3 > AN −1 log |sN (TNf − z + δWω(N))|) ≥ 1− CN−2.

Therefore P(B < −N−γ) ≤ CN−2 for N ≫ 1. With this,
∑∞

1 P(AN) < ∞, and we have
almost sure weak convergence of the empirical measures of TNf+δWω(N) to vol(X)−1(f0)∗µd.

Proposition 4.6.1. Theorem 4.1.5 implies the probabilistic Weyl law (Theorem 1.0.1) stated
in the introduction.

Proof. Here we prove Theorem 1.0.1 for the general random perturbation case, but the
Gaussian case (with a less restrictive coupling constant) follows similarly.

For Λ ⊂ C given in the hypothesis, let

AN :=
vol(X)

N
#
{
Spec(TNf +N−dWω(N)) ∩ Λ

}
.

It suffices to show that for each ε > 0

P
(
lim sup
N→∞

|AN − µd(f ∈ Λ)| > ε

)
= 0.

We may assume Λ is bounded. If not, let Λ̃ be an open, bounded neighborhood of f(X).
Recall that almost surely Spec(TNf + δWω(N)) ⊂ Λ̃ for N ≫ 1. Therefore if

ÃN = (vol(X)/N )#
{
Spec(TNf +N−dWω(N)) ∩ Λ ∩ Λ̃

}
,

then

P
(
lim sup
N→∞

|AN − µd(f ∈ Λ)| > ε

)
= P

(
lim sup
N→∞

|ÃN − µd(f ∈ Λ)| > ε

)
.

Now relabel Λ∩ Λ̃ as Λ. For each ε > 0, let K ⊂ Λ be a compact set such that m(Λ\K) < ε.
Similarly, let U ⊃ Λ be an open set such that m(U \ Λ) < ε (here m denotes the Lebesgue
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measure). Define φ, ψ ∈ C∞
0 (C; [0, 1]) such that suppφ, suppψ ⊂ U , φ(x) ≡ 1 for x ∈ K,

and ψ(x) ≡ 1 for x ∈ Λ. We then have that for λj ∈ Spec(TNf +N−dWω(N))

vol(X)

N

N∑
j=1

φ(λi)−
vol(X)

N
# {λi ∈ Λ \K} ≤ AN ≤ vol(X)

N

N∑
j=1

ψ(λi). (4.6.3)

By Theorem 4.1.5, the lower bound of (4.6.3) convergences almost surely to

ˆ
C
φ(z)(f∗µd)(dz) = µd(f ∈ Λ) + O(εκ).

Here the term involving # {λi ∈ Λ \K} is easily handled by a similar argument of con-
structing upper and lower bounds with bump functions and using that Λ \ K is an open
set whose measure is O(ε). Similarly, the upper bound of (4.6.3) converges almost surely to
µd(f ∈ Λ) + O(εκ) (where the constant in O(εκ) is deterministic). Therefore there exists
C > 0 such that

P
(
lim sup
N→∞

|AN − µd(f ∈ Λ)| > Cεκ
)

= 0.

Because ε > 0 is arbitrary, this implies AN converges almost surely to µd(f ∈ Λ). Then,
because N = vol(X)(N/2π)d + O(Nd−1), (N/2π)d vol(X)N −1AN converges almost surely
to µd(f ∈ Λ).
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Appendix A

Computation of the second term in
the star product

The goal of this section is to compute the second term in the star product of Toeplitz
operators. Indeed, by Theorem 3.3.11 we know that if f and g are symbols in Sδ(m),
then there exists a symbol h ∼

∑
N−jhj, such that TN,f ◦ TN,g = TN,h + O(N−∞). It is

straightforward to show that h0 = fg (modulo O(N−(1−2δ))).

A.1 General quantizatable Kähler manifolds

This section directly computes h1 (modulo O(N−2(1−2δ)m) error).
In this section, for vectors u, v ∈ Cd, we write ⟨u, v⟩ :=

∑
uivi. For functions f ∈ C∞(Cd),

we denote by ∇xf the vector in Cd whose jth component is ∂xjf . We similarly denote by

∇x̄f the vector whose jth component is ∂xjf .

Theorem A.1.1. Given δ ∈ [0, 1/2), suppose m1,m2 are two δ-order functions on X (a
quantizable Kähler manifold with Kähler potential φ), f ∈ Sδ(m1), g ∈ Sδ(m2), and h = f⋆g.
Then locally

h1(x) = −
d∑

j,k=1

(∂∂φ(x))j,k∂kf(x)∂jg(x) + O(N−2(1−2δ)m(x)), (A.1.1)

where (∂∂φ(x))j,k ∈ Cd×d is such that
∑

k(∂∂φ(x))
j,k(∂k∂ℓφ(x)) = δj,ℓ.

Remark A.1.1. From this, we get the classical-quantum correspondence of Toeplitz opera-
tors. Indeed, by (A.1.1) the principal symbol of [TN,f , TN,g] is

N−1(−
〈
(∂∂φ)−1∇xf,∇x̄g

〉
+
〈
(∂∂φ)−1∇xg,∇x̄f

〉
) + O(N−2(1−2δ)m). (A.1.2)

Note that the Poisson bracket of f and g is {f, g} = ω(Xf , Xg), where Xf and Xg are the
Hamiltonian vector fields of f and g respectively and ω is the symplectic form on X. If we
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write ω =
∑
Wi,j dzi ∧ dz̄j, then

∂xif =
d∑
j=1

Wj,i dzj(Xf ), ∂xif = −
d∑
j=1

Wi,j dz̄j(Xf ),

with identical identities relating g and Xg. Therefore

ω(Xf , Xg) =
∑
i,j

Wi,j dzi ∧ dz̄j(Xf , Xg)

=
∑
i,j

Wi,j(dzi(Xf ) dz̄j(Xg)− dzi(Xg) dz̄j(Xf ))

=
〈
W t(W t)−1∇x̄f,−W−1∇xg

〉
−
〈
W t(W t)−1∇x̄g,−W−1∇xf

〉
=
〈
W−1∇xf,∇x̄g

〉
−
〈
W−1∇xg,∇xf

〉
.

Now, because Wi,j = i∂i∂jφ, we see from (A.1.2) that

[TN,f , TN,g] =
1

iN
TN,{f,g} + O(N−2(1−2δ)m).

The method to prove Theorem A.1.1 is to compute the Schwartz kernel of the asymptotic
expansion of TN,f ◦TN,g and find a symbol that agrees with this kernel. By the almost analytic
properties of the kernel, it suffices to work exclusively on the diagonal. Along the diagonal,
the method of stationary phase has more explicit formulae. This section will use a stationary
phase expansion presented in [Hör83].

Proof. Estimates on the error term in (A.1.1) were established in Theorem 3.3.1. For a
simpler proof, we assume that f, g ∈ S0(1).

Near x0 ∈ X, we choose a normal coordinate system (z1(x), . . . , zd(x)) ∈ Cd. In this
way, ∂zj∂z̄kφ(z(x0)) = δj,k and ∂

α
z,z̄∂zj∂z̄kφ(z(x0)) = 0 for all j, k = 1, . . . , d and α ∈ N2d with

|α| = 1.
Let Cj be the differential operators coming from stationary phase:(

N

2π

)2d ˆ
Cd

u(w)eNΦxȳ(w) dµ(w) ∼
(
N

2π

)d
eNψ(x,ȳ)

∞∑
0

N−jCj[u](x, ȳ),

with u ∈ C∞(Cd;C), Φx,ȳ(w) = ψ(x, w̄) − φ(w) + ψ(w, ȳ), and µ(w) = ω∧d/d!. When
computing TN,f , terms of order O(N−2) are not needed to compute the second term in the
expansion. In this case the functions coming from the Bergman kernel expansion can be
approximated as B(x, ȳ) = 1 + N−1b1(x, ȳ) + O(N−2), so that the amplitude in the kernel
of TN,f is f(w)(1 +N−1(b1(x, w̄) + b1(w, ȳ)) + O(N−2). In this way:

f0(x, ȳ) = C0[f ](x, ȳ),

f1(x, ȳ) = C0[f(·)(b1(x, ·) + b1(·, ȳ)](x, ȳ) + C1[f ](x, ȳ),
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and on the diagonal:

f0(x, x̄) = f(x),

f1(x, x̄) = 2f(x)b1(x) + C1[f ](x, x̄). (A.1.3)

If we are given TN,f and TN,g, then the first term in the expansion of TN,f ◦ TN,g along the
diagonal will be f(x)g(x). While the second term is

C0[f1(x, ·)g0(·, ȳ) + f0(x, ·)g1(·, ȳ)](x, ȳ) + C1[f0(x, ·)g0(·, ȳ)](x, ȳ).

Along the diagonal, this is

(2fb1 + C1[f ])g + f(2gb1 + C1[g]) + C1[f0(x, ·)g0(·, x̄)], (A.1.4)

with all Cj operators evaluated at (x, x̄) and functions evaluated at x. Suppose TN,f ◦TN,g =
TN,h +O(N−∞) for some h ∼

∑
N−jhj. The N

0 order term of TN,h(x, x̄) is C0(h0) = h0(x),
so that h0 = f(x)g(x). The N−1 order term is

C0[h0(b1(x, ·) + b1(·, ȳ)) + h1](x, ȳ) + C1[h0](x, ȳ).

Along the diagonal this is:

2h0(x)b1(x) + h1(x) + C1[fg](x, x̄). (A.1.5)

Setting (A.1.5) equal to (A.1.4), and solving for h1 gives the relation

h1(x) = 4fgb1 − 2fgb1 − C1[fg] + C1[f0(x, ·)g0(·, x̄)] + C1[f ]g + fC1[g]

= 2fgb1 + C1[f0(x, ·)g0(·, x̄)− f(·)g(·)] + gC1[f ] + fC1[g] (A.1.6)

with all Cj operators evaluated at (x, x̄), f, g evaluated at x, and b1 evaluated at (x, x̄).
Recall that i∂∂φ = ω and in normal coordinates ω(x) = iH with H a positive definite,

real, self-adjoint, invertible matrix, such that H(x0) = 1.

Lemma A.1.2. On the diagonal:

C1[u] = L1[u detH]

with L1 = −⟨∇z,∇z̄⟩+ A, and

A = −2−1 ⟨∇z,∇z̄⟩ detH(x0)− b1(x0)

Proof. By [Hör83, Theorem 7.7.5]

ˆ
R2d

u(w)eNΦx,x̄(w) dw ∼ eNΦx,x̄(x)(2π)d√
det(−NΦ′′

xx̄(x))

∞∑
j=0

N−jLju, (A.1.7)
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with:

L1u =
3∑

ν=1

i−1+ν2−ν
〈
(Φ′′

x,x̄)
−1(x)D,D

〉ν
(gν−1
x u)(w)/((ν − 1)!ν!),

with derivatives evaluated at x, and

gx(w) = Φx,x̄(w)/i− Φx,x̄(x)/i+ ⟨iΦx,x̄(x)
′′(w − x), w − x⟩ /2.

By computation

Φ′′
x0,x̄0

(x0) = −4

(
1 0
0 1

)
,

so that

det(−NΦ′′
x0,x̄0

(x0))
−1/2 = (4N)−d.

Therefore, (A.1.7) simplifies to:( π

2N

)d ∞∑
j=0

N−jLj(u) (A.1.8)

Observe that
〈
Φ′′
x0,x0

(x0)
−1D,D

〉
= 4−1∆w (using the notation thatD = i−1∇). Let g := gx0 ,

and note that g vanishes to third order at x0. Then we compute that

L1u =
1

8
∆wu+ c2((∇w)

2g)u+ c3(∇w(∆wg)) · ∇wu+ c4((∆w)
3(g2)u) (A.1.9)

for some constants c2, c3, c4. Observe that (∇w(∆wg)) evaluated at x0 will be a linear com-
bination of first derivatives of the entries of H(x), which are all zero because we are using
normal coordinates. Therefore (A.1.9), evaluated at x0, reduces to:

L1u =

(
1

8
∆w + A

)
u =

(
1

2
∇z · ∇z̄ + A

)
u (A.1.10)

for some constant A, and using the complex variable z = w1 + iw2.
The operators Cj along the diagonal can be recovered from Lj. Indeed, by matching

powers of N and using that dµ = ω∧d/d! = det(H)2d dm(w) (see [LeF18, Lemma 2.6.2]), we
see, by (A.1.8),

Cj[u] = Lj[u detH]. (A.1.11)

The constant A can be computed by recalling that if f = 1, the Toeplitz operator is
just the Bergman projector. So letting f = 1 in (A.1.3), we get that C0[2b1] + C1[1] = b1,
which can be rearranged as b1 = −C1(1). Then since detH(x0) = 1, and using (A.1.11) and
(A.1.10), we get

b1 = −A− 2−1 ⟨∇z,∇z̄⟩ detH(z). (A.1.12)
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Because we are using normal coordinates, ∇ detH = 0, therefore using (A.1.12),

C1[u] = (2−1 ⟨∇z,∇z̄⟩+ A)(u detH)

= Au+ 2−1 ⟨∇z,∇z̄⟩u+ 2−1(⟨∇z,∇z̄⟩ det(H))u

= 2−1 ⟨∇z,∇z̄⟩u− b1u.

Then (A.1.6) becomes, after canceling all fgb1’s,

2−1(⟨∇z,∇z̄⟩ (f0(x, ·)g0(·, x̄)− f(·)g(·))− g ⟨∇z,∇z̄⟩ f − f ⟨∇z,∇z̄⟩ g) (A.1.13)

Now note that f0 and g0 are almost holomorphic in the first argument, and almost anti-
holomorphic in the second coordinate. They can be treated as holomorphic and anti-
holomorphic as we are on the diagonal. So (A.1.13) becomes, after applying the product
rule and canceling terms:

−2−1 ⟨∇zf,∇z̄g⟩ . (A.1.14)

Finally, if we use arbitrary holomorphic coordinates x, and let J = Dx/Dz be the Jacobian
relating the x coordinates to the normal coordinates, then (A.1.14) is

−2−1
〈
J t∇xf, (J̄)

t∇x̄g
〉
= −2−1

〈
J̄J t∇xf,∇x̄g

〉
. (A.1.15)

Because we used normal coordinates, J must satisfy

2I = J t(∂x∂xφ)J̄ = J t(H)J̄ ,

so that JT = 2J̄−1H−1, so that (A.1.15) becomes:

−
〈
H−1∇xf,∇x̄g

〉
.

Then, because H = ∂∂φ, we get our theorem.

A.2 Example: C
In this section we prove an asymptotic expansion of the kernel of Toeplitz operators on C
and compute the second term in the star product of operators.

A.2.1 Asymptotic expansion of Toeplitz operators

A simple (although not compact) Kähler manifold is C with symplectic form ω = i dz ∧ dz̄.
Considering holomorphic sections of powers of the trivial line bundle, the quantum space for
each N can be identified with all holomorphic functions f such thatˆ

C
|f |2e−N |z|2 dm(z) <∞.
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This space is called the Bargmann space with L2 structure

⟨f, g⟩ := 2

ˆ
C
f(z)ḡ(z)e−N |z|2 dm(z).

In this case, the Bergman kernel is

ΠN(x, ȳ) =
N

2π
exp(Nxȳ).

The Kähler potential is φ(y) = |y|2 with analytic extension ψ(x, ȳ) = xȳ (see for example
[LeF18, Example 7.2.2]). So if f ∈ Sδ(1) for a fixed δ ∈ [0, 1/2) , the kernel of the Toeplitz
operator TN,f is

TN,f (x, ȳ) =

(
N

2π

)2 ˆ
C
f(w) exp(N(xw̄ − |w|2 + wȳ))2 dm(w).

We write this as an integral over R2 by letting w = w1 + iw2. Completing the square of the
phase, this integral is:(

N

2π

)2

eNxȳ
ˆ
R2

eN(−(w1−a)2−(w2−b)2)f(w1 + iw2)2 dw1 dw2 (A.2.1)

with a = 2−1(x + ȳ) and b = (2i)−1(x − ȳ), which is approximately true for quantizable
Kähler manifolds1. Note by the Gaussian decay in the integrand of (A.2.1) it suffices to
assume f is compactly supported as anything away from a or b will be exponentially small
in N .

We may now integrate (A.2.1) as an iterated integral. Let’s first integrate over w1. For
R sufficiently large, let a = a1 + ia2, and rewrite the inner integral in (A.2.1) as

ˆ R

−R
e−N(w1−ia2)2f(w1 + a1 + iw2) dw1. (A.2.2)

Let fR(x, y) = f(x+ iy), so the integrand has the term fR(w1+a1, w2). By Stokes’ Theorem,
(A.2.2) is

ˆ R

−R
e−Nw

2
1 f̃R(w1 + ia2 + a1, w2) dw1 +

¨
Ωa

e−N(z−ia2)2∂zf̃R(z + a1, w2) dz ∧ dz̄

1In the general case, this (a, b) is p̃(t). Much of the trouble with the method of complex stationary phase
is that the phase is not holomorphic, and therefore the extension is not unique, and so the critical point is
no longer unique. However, when the phase is not holomorphic, the critical point still approximately takes
this form.
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where f̃R is an extension of fR to C2, and Ωa = {x+ iy : x ∈ [−R,R], y ∈ [0, a2]}. Ignoring
the second term for the moment, we now integrate the first term over w2, by the same
reasoning (possibly increasing R), we get

ˆ R

−R

ˆ R

−R
e−N(w2

1+w
2
2)f̃R(w1 + a, w2 + b) dw1 dw2 (A.2.3)

+

ˆ R

−R

¨
Ωb

e−N(w2
1+(z−ib2))∂zf̃R(w1 + a, z + b)(dz ∧ dz̄) dw1.

The first term in (A.2.3) is estimated using the method of steepest descent (for example see
[GS94, Exercise 2.4]), as

( π
N

)M−1∑
k=0

N−k

4kk!
∆kf̃R(a, b) + SM(f,N),

with

|SM(f,N)| ≤ CNN
−M−1

∑
|α|=2M

sup |∂αf̃R|.

Here ∆f̃R(x, y) := (∂2Re(x) + ∂2Re(y))(f̃R(x, y)). If we compute the kernel on the diagonal,

x = y, then all derivatives are tangential to the totally real submanifold which f̃R is extended
from and we evaluate the derivatives at (Re (x) , Im (x)). So when x = y, the first term in
(A.2.3) is

( π

2N

) M∑
k=0

N−k

4kk!
(∂2u + ∂2v)

k(f(u+ iv))
∣∣∣u=Re(x)
v=Im(x)

+ SM(f,N) (A.2.4)

=
( π

2N

) M∑
k=0

N−k

k!
(∂∂)kf(x) + SM(f,N).

A.2.2 Controlling error terms

Next we show that the error terms

I1 :=

(
N

2π

)2

eNxȳ
ˆ
R
e−N(w2−b)2

¨
Ωa

e−N(z−ia2)2∂zf̃R(z + a1, w2) dz ∧ dz̄ dw2,

I2 :=

(
N

2π

)2

eNxȳ
ˆ
R

¨
Ωb

e−N(w2
1+(z−ib2))∂zf̃R(w1 + a, z + b) dz ∧ dz̄ dw1,

are exp(−N
2
(|x|2 + |y|2))O(N−∞). First note that 2Re (xȳ) = −|x − y|2 + |x|2 + |y|2. Let

ε = x− y, so that a = Re (x)− ε̄/2, b = Im (x)− ε̄/(2i), a2 = Im (ε) /2, and b2 = Re (ε) /2.
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Therefore, |I1| is bounded by(
N

2π

)2

e
N
2
(|x|2+|y|2)

∣∣∣ˆ
R
e−N(w2−b)2

ˆ R

−R

ˆ Im(ε)
2

0

e−N(z1+iz2−iIm(ε)/2)2−N |ε|2/2)

·∂zf̃R(z + a1, w2) dz1 dz2 dw2

∣∣∣.
We then apply ∂ estimates for f̃R. That is for each M ∈ N, there exists CM > 0 so that
∂zf̃R(a, b) ≤ CMN

δM0(|Im (a)|+ |Im (b)|)M . Fixing, M , the inner integral is bounded by

CM

ˆ Im(ε)
2

0

eN(z2−Im(ε)/2)2−N |ε|2/2N δM0zM2 dz2 (A.2.5)

Expanding the exponential, we see that

(A.2.5) ≤ CMN
δM0e−

N
4
Im(ε)2

ˆ Im(ε)
2

0

exp
(
Nz22 − zIm (ε)N

)
dz2

≤ CMN
δM0e−

N
4
Im(ε)2 Im (ε)M+1

NM+1

ˆ N
2

0

tM exp

(
tIm (ε)2

(
t

N
− 1

))
dt

≤ CMN
δM0e−

N
4
Im(ε)2 Im (ε)M+1

NM+1

ˆ N
2

0

tMe−tIm(ε)2/2 dt

≲M e−
N
4
Im(ε)2 N δM0

NM+1Im (ε)M+1

ˆ Im(ε)2N
4

0

e−ttM dt

≲M N δM0−M−1.

Therefore:

|I1| ≲M N δM0−M−1+2e
N
2
(|x|2+|y|2)

ˆ
R
e−N(w2−b)2

ˆ R

−R
e−Nz

2
1 dz1 dw2

≲ N δM0−M+1e
N
2
(|x|2+|y|2),

so that I1 = e
N
2
(|x|2+|y|2)O(N−∞). An identical argument is used to show the same bound

for I2.

A.2.3 Using the notation presented in Treves

It is instructive to see how the change of variables presented by Treves in [Tre80], and used
in §3.3, applies to this simple example. Let’s consider a symbol f to quantize. Then, as in
(3.3.10),

TN,f (x, ȳ) =

(
N

2π

)
e

N
2
(|x|2+|y|2)

ˆ
R2

eNΨ(p,t)g(p, t) dp,
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with x = (t1 + it2), y = (t3 + it4), w = p1 + ip2, and

Ψ(p, t) := xw̄ − |w|2 + wȳ − 1

2
(|x|2 + |y|2)

= xw̄ − |w|2 + wȳ − 1

2
(|x|2 + |y|2)

= (t1 + it2)(p1 − ip2)− p21 − p22 + (p1 + ip2)(t3 − it4)

− 1

2
(t21 + t22 + t23 + t24),

g(p, t) := 2f(p1 + ip2).

The critical point for this phase when it is holomorphically extended (note Ψ is real-analytic,
so the extension is unique) is

p̃(t) =

(
1

2
(t1 + it2 + t3 − it4),

1

2i
(t1 + it2 − t3 + it4)

)
,

so that

Φ̃pp(p̃(t)) = −2

(
1 0
0 1

)
.

In this case, we change variables, as in Lemma 3.3.2,

q(p, t) =
√
2

(
1 0
0 1

)
(p− p̃(t))

=
√
2

(
p1 − 1

2
(t1 + it2 + t3 − it4)

p2 − 1
2i
(t1 + it2 − t3 + it4)

)
: C2 × R4 → C2.

Then the new contour is {p ∈ C2 : q(p, t) = w ∈ R2}. For each w ∈ R2, we see that

w1 =
√
2Re (p1)−

1√
2
(t1 + t3), w2 =

√
2Re (p2)−

1√
2
(t2 + t4),

0 = Im (p1) +
1√
2
(−t2 + t4), 0 = Im (p2) +

1√
2
(t1 − t3).

Therefore the new contour is

U0 =

{
p(w) :=

(
1
2
(t1 + t3) +

w1√
2
− i

2
(−t2 + t4)

1
2
(t2 + t4) +

w2√
2
− i

2
(t1 − t3)

)
: (w1, w2) ∈ R2

}
.

The real stationary phase is applied to the amplitude g(p(w)) det( ∂p
∂w

), which is, after replac-
ing t with its definition,

1

2
g̃

(
1

2
(x+ ȳ) +

w1√
2
,
1

2i
(x− ȳ) +

w2√
2

)
.
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So that, ignoring constants

fj(x, y) = (∂2Re(w1)
+ ∂2Re(w2)

)j g̃(w1, w2)|w1=
1
2
(x+ȳ)

w2=
1
2
(x−ȳ)

.

Along the diagonal, this agrees with the computation in (A.2.4) (with constants which can
be shown to be equal). This provides a (non-unique) asymptotic expansion of TN,f using
complex stationary phase, and possibly sheds light on how this method works in general.

A.2.4 Computing the second term in the star product

In this section we let f, g ∈ C∞
0 (C;C) and determine (f ⋆ g)1. This is a simpler version

of Appendix A, however in this case, the symplectic form is constant and in the Bergman
kernel expansion, bj = 0 for j ≥ 1. First, if f is a symbol, then

TN,f (x, ȳ) ∼
(
N

2π

)
eNxȳ

∞∑
j=0

N−jCj(f)(x, ȳ)

with

Cj[f ](x, ȳ) =
1

4kk!
(∂2Re(w1)

+ ∂2Re(w2)
)j f̃(w1, w2)|(w1,w2)=τ(x,ȳ)

where τ(x, ȳ) = 2−1(x+ ȳ, i−1(x− ȳ)). Importantly, when y = x this becomes:

Cj[f(·)](x, x̄) =
1

4jj!
(∂2Re(w1)

+ ∂2Re(w2)
)j f̃(w1, w2)|(x,y)=τ(x,x̄)

=
1

j!
(∂∂̄)jf(x).

Now we may write the first few terms of (f ⋆ g):

(f ⋆ g)0(x) = C0[f0(x, ·)g0(·, x̄)](x, x̄) = f0(x, x̄)g0(x, x̄) = f(x)g(x),

(f ⋆ g)1(x) = C0[f1(x, ·)g0(·, x̄)](x, x̄) + C0[f0(x, ·)g1(·, x̄)](x, x̄)
+ C1[f0(x, ·)g0(·, x̄)](x, x̄)− C1[h0(·)](x, x̄)

= ∂∂f(x)g(x) + f(x)∂∂g(x) + C1[f0(x, ·)g0(·, x̄)](x, x̄)− ∂∂(f(x)g(x))

= C1[f0(x, ·)g0(·, x̄)](x, x̄)− ∂f(x)∂g(x)− ∂f(x)∂g(x).

Note:

C1[f0(x, ·)g0(·, x̄)](x, x̄) = ∂w∂w[f̃(τ(x, w̄)g̃(w, x̄)]|w=x

=

(
1

2
∂1f̃ +

i

2
∂2f̃

)(
1

2
∂1g̃ −

i

2
∂2g̃

)
= ∂f(x)∂g(x)
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where ∂if̃ is the holomorphic derivative of f̃ with respect to its ith component. Here we use
that f0 is almost anti-holomorphic in the second argument and g0 is almost holomorphic in
the first argument. The error terms are absorbed in the O(N−2) error. We therefore get:

(f ⋆ g)1(x) = −∂f(x)∂g(x).



84

Appendix B

Computation of Toeplitz operators on
CP1

In this appendix, we explicitly compute the Toeplitz operators on CP1.
The Hilbert space we use is the holomorphic sections of tensor powers of the dual of the

tautological line bundle. In local coordinates, the Kähler potential is φ(z) := log(1 + |z|2),
so that the symplectic form is i∂∂φ(z) = i(1 + |z|2)−2 dz ∧ dz̄. Smooth sections of the Nth
tensor power are identified with smooth functions on C. The Hilbert space then has the
inner-product given by:

⟨f, g⟩L2(M,LN ) :=

ˆ
C

f(z)g(z)

(1 + |z|2)N+2
2 dm(z)

for f, g ∈ C∞(C). Here we use that |dz ∧ dz̄| = 2 |dRe (z) ∧ dIm (z)| = 2dm(z).

B.1 Computing Bergman kernel

The space of holomorphic sections is identified with polynomials of degree less than N .

An orthonormal basis is given by
{
ckz

k : k = 0, 1, . . . , N − 1
}
, where ck :=

∥∥zk∥∥−2

L2(M,LN )
.

Explicitly,

∥∥zk∥∥2
L2(M,LN )

= 2

ˆ
C

|z|2k

(1 + |z|2)N+2
dm(z)

= 4π

ˆ ∞

0

r2k+1

(1 + |r|2)N+2
dr

=
2πk!(N − k)!

(N + 1)!
=

2π

(N + 1)
(
N
k

)
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so that:

ck :=

√
N + 1

2π

(
N

k

)
.

Then the Bergman kernel is:

ΠN(z, w̄) =
N∑
k=0

ek(z)ek(w̄)

=
N∑
k=0

c2kz
kw̄k

=
N + 1

2π

N∑
k=0

(
N

k

)
zkw̄k

=
N + 1

2π
(1 + zw̄)N

=
N + 1

2π
exp (N log(1 + zw̄)) .

Note that ψ(z, w) := log(1 + zw) is the analytic extension of φ(z) = log(1 + |z|2).

B.2 Explicit computation of matrices

We now choose a chart for CP1 that contains all but one point of CP1. We then identify C
with the two-sphere without the north pole via the assignment:

C ∋ z 7→ 1

1 + |z|2
(2Re (z) , 2Im (z) , 1− |z|2) := (x1, x2, x3) ∈ S2 ⊂ R3.
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Then for each N ∈ N, we compute TN(xi) for i = 1, 2, 3. For 0 ≤ ℓ ≤ N :

(TN(x1))(z
ℓ)(x) =

N + 1

2π

ˆ
C
x1w

ℓeNψ(x,w̄)e−Nφ(w)µ1(w)

=
N + 1

π

ˆ
C

w + w̄

1 + |w|2
wℓ(1 + xw̄)N(1 + |w|2)−N(1 + |w|2)−2 dm(w)

=
N + 1

π

ˆ
C

w + w̄

(1 + |w|2)N+3
wℓ(1 + xw̄)N dm(w)

=
N + 1

π

N∑
j=0

(
N

j

)
xj
ˆ
C

(w + w̄)wℓwj

(1 + |w|2)N+3
dm(w)

=
N + 1

π

N∑
j=0

(
N

j

)
xj
ˆ 2π

0

ˆ ∞

0

rj+ℓ+2(eiθ(ℓ+1−j) + eiθ(ℓ−1−j))

(1 + r2)N+3
dr dθ

= 2(N + 1)

(
1ℓ<Nx

ℓ+1

(
N

ℓ+ 1

)ˆ ∞

0

r2ℓ+3

(1 + r2)N+3
dr

+1ℓ≥0x
ℓ−1

(
N

ℓ− 1

) ˆ ∞

0

r2ℓ+1

(1 + r2)N+3
dr

)
= (N + 1)

(
1ℓ<Nx

ℓ+1

(
N

ℓ+ 1

)
(ℓ+ 1)!(N − ℓ)!

(N + 2)!

+1ℓ≥0x
ℓ−1

(
N

ℓ− 1

)
ℓ!(N − ℓ+ 1)!

(N + 2)!

)
= 1ℓ<N

xℓ+1(N − ℓ)

N + 2
+ 1ℓ≥0

xℓ−1ℓ

N + 2
.

Now we use the normalization constants to get the entries of the matrix representation
of TN(x1).

For each 0 < ℓ ≤ N , the (ℓ− 1, ℓ) entry of the matrix of TN(x1) is:

cℓ
cℓ−1

ℓ

N + 2
=

ℓ

N + 2

√(
N
ℓ

)√(
N
ℓ−1

)
=

ℓ

N + 2

√
N − ℓ+ 1√

ℓ
.

Similarly, for each 0 ≤ ℓ < N , the (ℓ+ 1, ℓ) entry of the matrix TN(x1) is:

cℓ
cℓ+1

N − ℓ

N + 2
=
N − ℓ

N + 2

√
ℓ+ 1√
N − ℓ

.
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All the other entries of the matrix are zero. We therefore get that:

TN(x1) =
1

N + 2



0
√
N 0 · · · 0√

N 0
√
2(N − 1) 0

0
√

2(N − 1) 0
√

3(N − 2)
...

...
√

3(N − 2)
. . . . . . 0

...
. . . 0

√
N

0 0 · · · 0
√
N 0


where the off-diagonals are

√
ℓ(N − ℓ+ 1). TN(x1) can be constructed in Matlab with the

following code stored as the variable X1.

1 e = (N+2)^(-1)*sqrt ((1:N).*(N: -1:1)); % off -diagonals

2 X1 = diag(e',1)+diag(e',-1);

We can similarly compute the matrix representation of TN(x2) by replacing w+ w̄ in the
integrand by −i(w − w̄). We will then get that TN(x2) is

1

N + 2



0 i
√
N 0 · · · 0

−i
√
N 0 i

√
2(N − 1) 0

0 −i
√

2(N − 1) 0 i
√
3(N − 2)

...
... −i

√
3(N − 2)

. . . . . . 0
...

. . . 0 i
√
N

0 0 · · · 0 −i
√
N 0


.

In Matlab, this can be coded and stored under the variable X2 in the following way.

1 e = (N+2)^(-1)*sqrt ((1:N).*(N: -1:1)); % off -diagonals

2 X2 = diag(1i*e',1)+diag(-1i*e',-1);

Lastly, for 0 ≤ ℓ ≤ N :

(TN(x3))(z
ℓ)(x) =

N + 1

2π

N∑
j=0

(
N

j

)
xj
ˆ
C

(1− |w|2)wℓw̄j

(1 + |w|2)N+3
dm(w)

=
N + 1

π

N∑
j=0

(
N

j

)
xj
ˆ 2π

0

ˆ ∞

0

rℓ+j+1eiθ(ℓ−j) − r3+ℓ+jeiθ(ℓ−j)

(1 + r2)N+3
dr dθ

= 2(N + 1)

(
N

ℓ

)
xℓ
(ˆ ∞

0

r2ℓ+1 − r2ℓ+3

(1 + r2)N+3
dr

)
= 2(N + 1)

(
N

ℓ

)
xℓ
(N − 2ℓ)ℓ!(N − ℓ)!

2(N + 2)!

=
N − 2ℓ

N + 2
.
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Therefore the matrix representation of TN(x3) is:

TN(x3) =
1

N + 2



N 0 · · · · · · 0

0 N − 2 0
...

... 0 N − 4
. . .

. . . . . .
...

. . . −N + 2 0
0 · · · · · · 0 −N


.

In Matlab, this can be coded and stored under the variable X3 in the following way.

1 X3 = diag((N+2)^(-1)*(N:-2:-N));

We can then check that:

TN(x1 + ix2) =
1

N + 2



0 0 0 · · · 0√
N 0 0 0

0
√

2(N − 1) 0 0
...

...
√

3(N − 2)
. . . . . . 0

...
. . . 0 0

0 0 · · · 0
√
N 0


.

We can compute the Toeplitz quantizations of powers of these xi’s, but the computations
become more tedious. Here we compute TN(x

2
1).

Define for k,N ∈ Z, 0 ≤ k < 2 +N :

Bk,N :=

ˆ ∞

0

x2k+1

(1 + x2)N+4
dx =

k!(N − k + 2)!

2(N + 3)!
.

For 0 ≤ ℓ ≤ N , we have:

TN(x
2
1)(x) =

N + 1

π

ˆ
C

(w + w̄)2

(1 + |w|2)N+4
wℓ(1 + xw̄)N dm(w)

=
N + 1

π

ℓ∑
j=0

xj
(
N

j

) ˆ
C

(w2 + 2|w|2 + w̄2)wℓw̄j

(1 + |w|2)N+4
dm(w)

= 2(N + 1)

(
1ℓ≤N−2x

2+ℓ

(
N

ℓ+ 2

)
Bℓ+2,N + 2xℓ

(
N

ℓ

)
Bℓ+1,N

+1ℓ≥2x
ℓ−2

(
N

ℓ− 2

)
Bℓ,N

)
.
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Therefore the matrix representation of TN(x
2
1) will have exactly three nonzero diagonals. For

ℓ ≥ 2, the (ℓ− 2, ℓ) entry will be:

2(N + 1)

(
N

ℓ− 2

)
Bℓ,N

cℓ
cℓ−2

= 2(N + 1)

(
N

ℓ− 2

)
ℓ!(N − ℓ+ 2)!

2(N + 3)!

√√√√ (
N
ℓ

)(
N
ℓ−2

)
=

√
(ℓ− 1)ℓ(N − ℓ+ 1)(N − ℓ+ 2)

(N + 3)(N + 2)
.

On the diagonal, the (ℓ, ℓ) entry is:

4(N + 1)

(
N

ℓ

)
Bℓ+1,N = 4(N + 1)

(
N

ℓ

)
(ℓ+ 1)!(N − ℓ+ 1)!

2(N + 3)!

=
2(ℓ+ 1)(N − ℓ+ 1)

(N + 3)(N + 2)
.

The matrix should be self-adjoint (because x21 ∈ R), but as a partial verification of this
computation, we compute the upper diagonal. For ℓ ≤ N − 2, the (ℓ+ 2, ℓ) entry of TN(x

2
1)

is

2(N + 1)

(
N

ℓ+ 2

)
Bℓ+2,N

cℓ
cℓ+2

= 2(N + 1)

(
N

ℓ+ 2

)
(ℓ+ 2)!(N − ℓ)!

2(N + 3)!

√√√√ (
N
ℓ

)(
N
ℓ+2

)
=

√
(ℓ+ 2)(ℓ+ 1)(N − ℓ)(N − ℓ− 1)

(N + 3)(N + 2)

and so we see the nonzero off-diagonals are the same, verifying that the matrix is self-adjoint.
The matrix representation of TN(x

2
1) can be coded in Matlab in the following way and

stored as the variable Y 1.

1 l = (2:N);

2 e2 = sqrt((l-1).*l.*(N-l+1).*(N-l+2));

3 e2 = e2/((N+3)*(N+2)); % off -diagonal

4 l = (0:N);

5 e1 = (l+1) .*(N-l+1);

6 e1 = 2*e1/((N+3)*(N+2)); % diagonal

7 Y1 = diag(e1)+diag(e2 ,-2)+diag(e2 ,2);

Because TN(x
2
1) = TN(x1)TN(x1) + O(N−1), we can numerically verify the construction

of TN(x
2
1) by computing N ∥TN(x21)− (TN(x1))

2∥, this is done in Figure B.1.

B.3 Numerics

In this section, we compute the spectrum of Toeplitz operators on CP1 numerically with and
without random perturbations.
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Figure B.1: Numerical computation of N ∥TN(x21)− (TN(x1))
2∥.

As an example of how this is coded, here is code for computing the spectrum of TN(x1 +
ix2) with small random perturbation with N = 1000.

1 N = 1000;

2 e = ((N+2))^(-1)*sqrt ((1:N).*(N:-1:1));

3 A = diag(e',1)+diag(e',-1);
4 B = diag(1i*e',1)+diag(-1i*e',-1);
5 R = N^(-3)*(randn(N+1)+1i*randn(N+1));

6 ev = eig(A+1i*B+R);

7 plot(real(ev),imag(ev),'.');

The output is plotted in Figure B.2.
Interestingly, if the random perturbation is replaced by a matrix with i.i.d. uniform-(0, 1)

random variables, there is an absence of eigenvalues near the real strip [0, 1]. This is plotted
in Figure B.3. This particular random perturbation is not included in the scope of this
thesis. An interesting direction is to prove why this occurs.

For Figures B.4, B.5, and B.6, we plot the numerically computed spectrum of TN(x1 +
2x21 + ix2) with and without random perturbation. In Figure B.4, no perturbation is added
and the spectrum is computed for increasing values of N . As N increases, the spectrum
spreads out with density matching the predicted probabilistic Weyl law. This matches the
intuition that rounding errors in Matlab act like small random perturbations.

In Figure B.5, we plot the spectrum of the same matrix with a random perturbation
(N = 2, 000, δ = N−3). The density of random eigenvalues should converge to the push-
forward of the surface measure on the sphere by the symbol of the operator. This density
is approximated by sampling 100, 000 points uniformly on the sphere, and plotting their
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Figure B.2: Spectrum of TN(x1 + ix2) + δGω(N) with N = 1, 000 and δ = N−3.

Figure B.3: Spectrum of TN(x1 + ix2) + δUω(N) with N = 1, 000 where Uω(N) has entries
given by i.i.d. uniform (0, 1) random variables and δ = N−3.
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Figure B.4: Spectrum of TN(x1+2x21+ix2) with no random perturbation at various values of
N . As N increases, this matches the spectrum of this operator with a random perturbation,
suggesting that small rounding errors in Matlab act like random perturbations. Conjec-
turally, the spectrum should lie on lines (as it does up to N = 80), and for larger N , this is
not the actual spectrum.

image under the symbol. This stochastic approximation of the density is plotted on the left.
Visually the two densities agree but are quantitatively compared in Figure B.6. In Figure
B.6, we compare the densities within rectangles and plot the results.

In Figures B.7 and B.8 the operator TN(x1 + ix21) is computed with and without random
perturbation for various values of N . In this case, the operator is normal and is therefore
spectrally stable under random perturbations (Which is demonstrated in the figures). Fur-
thermore, the Weyl law states that with random perturbation, the spectrum is contained
only on the curve Im (z) = Re (z)2 which is consistent.
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Figure B.5: On the left is a stochastic approximation of the push-forward of the surface
measure on the sphere by the function x1 + 2x21 + ix2 as a density on C. This is computed
by sampling 100, 000 points uniformly randomly on the sphere and plotting the image under
this function. On the right is the spectrum of TN(x1 +2x21 + ix2) + δGω(N) with N = 2, 000
and δ = N−3. This thesis’ result states that these two distributions should agree as N → ∞.

Figure B.6: Here we quantitatively compare the two densities on C as constructed in Figure
B.5. This is done by comparing the density of points in a rectangle of width 0.5, height 0.4,
and lower-left corner (x,−0.2) for x ranging between 0 and 2.5. The first and last rectangle
in the range is plotted on the left. On the right, these two densities are compared.
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Figure B.7: Here we plot the spectrum of TN(x1+ ix
2
1) with no random perturbation. Unlike

Figure B.4, the spectrum does not spread out as N increases. This should be expected.
For one, these matrices turn out to be normal operators, and so are stable under small
perturbation. For two, the Weyl law for this symbol states that under perturbations, the
spectrum should lie on the curve Im (z) = Re (z)2.
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Figure B.8: Here we plot the spectrum of TN(x1 + ix21) with a random perturbation for
δ = N−3. As is expected by the probabilistic Weyl law, there is no change to the spectrum.
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